-
1
-
-
0031208559
-
Blind system identification
-
Abed-Meraim, K., Qiu, W., and Hua, Y. (1997). Blind system identification. Proceedings of the IEEE, 85(8), 1310-1322.
-
(1997)
Proceedings of the IEEE
, vol.85
, Issue.8
, pp. 1310-1322
-
-
Abed-Meraim, K.1
Qiu, W.2
Hua, Y.3
-
2
-
-
0036475447
-
A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
-
Arulampalam, M.S., Maskell, S., Gordon, N., and Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing,50(2), 174-188.
-
(2002)
IEEE Transactions on Signal Processing
, vol.50
, Issue.2
, pp. 174-188
-
-
Arulampalam, M.S.1
Maskell, S.2
Gordon, N.3
Clapp, T.4
-
3
-
-
0036604581
-
A blind approach to the Hammerstein-Wiener model identification
-
Bai, E.W. (2002). A blind approach to the Hammerstein-Wiener model identification. Automatica, 38(6), 967-979.
-
(2002)
Automatica
, vol.38
, Issue.6
, pp. 967-979
-
-
Bai, E.W.1
-
4
-
-
0027602489
-
Hinging hyperplanes for regression, classification, and function approximation
-
Breiman, L. (1993). Hinging hyperplanes for regression, classification, and function approximation. IEEE Transactions on Information Theory, 39(3), 999-1013.
-
(1993)
IEEE Transactions on Information Theory
, vol.39
, Issue.3
, pp. 999-1013
-
-
Breiman, L.1
-
5
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1), 1-38.
-
(1977)
Journal of the Royal Statistical Society, Series B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
7
-
-
79953127023
-
Sequential Monte Carlo smoothing for general state space hidden Markov models
-
Submitted to
-
Douc, R., Garivier, A., Moulines, E., and Olsson, J. (2010). Sequential Monte Carlo smoothing for general state space hidden Markov models. Submitted to Annals of Applied Probability.
-
(2010)
Annals of Applied Probability
-
-
Douc, R.1
Garivier, A.2
Moulines, E.3
Olsson, J.4
-
10
-
-
23744482704
-
Robust maximum-likelihood estimation of multivariable dynamic systems
-
Gibson, S. and Ninness, B. (2005). Robust maximum-likelihood estimation of multivariable dynamic systems. Automatica, 41(10), 1667-1682.
-
(2005)
Automatica
, vol.41
, Issue.10
, pp. 1667-1682
-
-
Gibson, S.1
Ninness, B.2
-
11
-
-
55249097118
-
Maximum likelihood identification of Wiener models
-
Hagenblad, A., Ljung, L., and Wills, A. (2008). Maximum likelihood identification of Wiener models. Automatica, 44(11), 2697-2705.
-
(2008)
Automatica
, vol.44
, Issue.11
, pp. 2697-2705
-
-
Hagenblad, A.1
Ljung, L.2
Wills, A.3
-
12
-
-
77957564431
-
A kernel based approach to structured nonlinear system identification part I: Algorithms, part II: Convergence and consistency
-
Newcastle, Australia
-
Hsu, K., Vincent, T., and Poolla, K. (2006). A kernel based approach to structured nonlinear system identification part I: Algorithms, part II: Convergence and consistency. In Proceeding of the 14th IFAC Symposium on System Identification. Newcastle, Australia.
-
(2006)
Proceeding of the 14th IFAC Symposium on System Identification
-
-
Hsu, K.1
Vincent, T.2
Poolla, K.3
-
13
-
-
41849123126
-
A basic convergence result for particle filtering
-
Hu, X.L., Schön, T., and Ljung, L. (2008). A basic convergence result for particle filtering. IEEE Transactions on Signal Processing, 56(4), 1337-1348.
-
(2008)
IEEE Transactions on Signal Processing
, vol.56
, Issue.4
, pp. 1337-1348
-
-
Hu, X.L.1
Schön, T.2
Ljung, L.3
-
16
-
-
0003242895
-
Stochastic system identification for operational modal analysis: A review
-
Peeters, B. and Roeck, G.D. (2001). Stochastic system identification for operational modal analysis: A review. Journal of Dymamic Systems Measument and Control, 123(4), 659-667.
-
(2001)
Journal of Dymamic Systems Measument and Control
, vol.123
, Issue.4
, pp. 659-667
-
-
Peeters, B.1
Roeck, G.D.2
-
17
-
-
3242789232
-
-
Artech house, Boston, MA, USA
-
Ristic, B., Arulampalam, S., and Gordon, N. (2004). Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech house, Boston, MA, USA.
-
(2004)
Beyond the Kalman Filter: Particle Filters for Tracking Applications
-
-
Ristic, B.1
Arulampalam, S.2
Gordon, N.3
-
18
-
-
78650803456
-
System identification of nonlinear state space models
-
Schön, T.B., Wills, A., and Ninness, B. (2011). System identification of nonlinear state space models. Automatica, 47(1), 39-49.
-
(2011)
Automatica
, vol.47
, Issue.1
, pp. 39-49
-
-
Schön, T.B.1
Wills, A.2
Ninness, B.3
-
19
-
-
0038177952
-
Fast approximate identification of nonlinear systems
-
July
-
Schoukens, J., Nemeth, J.G., Crama, P., Rolain, Y., and Pintelon, R. (2003). Fast approximate identification of nonlinear systems. Automatica, 39(7), 1267-1274. July.
-
(2003)
Automatica
, vol.39
, Issue.7
, pp. 1267-1274
-
-
Schoukens, J.1
Nemeth, J.G.2
Crama, P.3
Rolain, Y.4
Pintelon, R.5
-
20
-
-
68249142936
-
Blind maximum-likelihood identification of Wiener systems
-
Vanbaylen, L., Pintelon, R., and Schoukens, J. (2009). Blind maximum-likelihood identification of Wiener systems. IEEE Transactions on Signal Processing, 57(8), 3017-3029.
-
(2009)
IEEE Transactions on Signal Processing
, vol.57
, Issue.8
, pp. 3017-3029
-
-
Vanbaylen, L.1
Pintelon, R.2
Schoukens, J.3
-
21
-
-
0030197651
-
Identifying MIMO Wiener systems using subspace model identification methods
-
Westwick, D. and Verhaegen, M. (1996). Identifying MIMO Wiener systems using subspace model identification methods. Signal Processing, 52, 235-258.
-
(1996)
Signal Processing
, vol.52
, pp. 235-258
-
-
Westwick, D.1
Verhaegen, M.2
-
22
-
-
0027625657
-
Recursive prediction error identification using the nonlinearwiener model
-
Wigren, T. (1993). Recursive prediction error identification using the nonlinearwiener model. Automatica, 29(4), 1011-1025.
-
(1993)
Automatica
, vol.29
, Issue.4
, pp. 1011-1025
-
-
Wigren, T.1
-
23
-
-
77957568881
-
Wiener system identification using the maximum likelihood method
-
F. Giri and E.W. Bai (eds.), Lecture Notes in Control and Information Science, Springer
-
Wills, A. and Ljung, L. (2010). Wiener system identification using the maximum likelihood method. In F. Giri and E.W. Bai (eds.), Block-Oriented Nonlinear System Identification, Lecture Notes in Control and Information Science no 404, 404. Springer.
-
(2010)
Block-Oriented Nonlinear System Identification
, vol.404
, Issue.404
-
-
Wills, A.1
Ljung, L.2
-
24
-
-
0002668692
-
Parametric Wiener model identification for control
-
Beijing, China
-
Zhu, Y. (1999). Parametric Wiener model identification for control. In Proceedings of the 14th IFAC World Congress, 37-42. Beijing, China.
-
(1999)
Proceedings of the 14th IFAC World Congress
, pp. 37-42
-
-
Zhu, Y.1
|