메뉴 건너뛰기




Volumn , Issue , 2012, Pages 172-177

An unsupervised feature learning approach to improve automatic incident detection

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMATIC INCIDENT DETECTION; CLASSIFICATION ALGORITHM; DETECTION RATES; FALSE ALARM RATE; FEATURE LEARNING; FEATURE MAPPING; FEATURE REPRESENTATION; INCIDENT DATA; LABELED DATA; MEAN TIME TO DETECT; REPRESENTATIVE CASE; TEST SITE; TRANSPORTATION SYSTEM;

EID: 84871229764     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ITSC.2012.6338621     Document Type: Conference Paper
Times cited : (12)

References (22)
  • 1
    • 84871235142 scopus 로고    scopus 로고
    • Freeway Incident Detection - Technologies and Techniques
    • K. Weegberg, Sydney
    • James Luk, Clarissa Han, et al., "Freeway Incident Detection - Technologies and Techniques. K. Weegberg," Technical Report of Austroads, Sydney, 2010.
    • (2010) Technical Report of Austroads
    • Luk, J.1    Han, C.2
  • 2
    • 84871250013 scopus 로고    scopus 로고
    • Evaluation of Sensys Networks wireless data station equipment: Stage 1 laboratory tests
    • Vermont South
    • Stewart, P., D. Stephenson, et al., "Evaluation of Sensys Networks wireless data station equipment: stage 1 laboratory tests," Technical Report of ARRB Group, Vermont South, 2006.
    • (2006) Technical Report of ARRB Group
    • Stewart, P.1    Stephenson, D.2
  • 3
    • 0029416188 scopus 로고
    • Automated detection of lane-blocking freeway incidents using artificial neural networks
    • Cheu, R. L. and S. G. Ritchie, "Automated detection of lane-blocking freeway incidents using artificial neural networks," Transportation Research Part C-Emerging Technologies, vol. 3, no. 6, pp. 371-388, 1995.
    • (1995) Transportation Research Part C-Emerging Technologies , vol.3 , Issue.6 , pp. 371-388
    • Cheu, R.L.1    Ritchie, S.G.2
  • 4
    • 0036532656 scopus 로고    scopus 로고
    • Development and adaptation of constructive probabilistic neural network in freeway incident detection
    • Jin, X., R. L. Cheu, et al., "Development and adaptation of constructive probabilistic neural network in freeway incident detection," Transportation Research Part C: Emerging Technologies, vol. 10, no. 6, pp. 121-147, 2002.
    • (2002) Transportation Research Part C: Emerging Technologies , vol.10 , Issue.6 , pp. 121-147
    • Jin, X.1    Cheu, R.L.2
  • 6
    • 0033340740 scopus 로고    scopus 로고
    • Enhancing the universality and transferability of freeway incident detection using a Bayesian-based neural network
    • Baher Abdulhai and S. G. Ritchie, "Enhancing the universality and transferability of freeway incident detection using a Bayesian-based neural network." Transportation Research Part C: Emerging Technologies, vol. 7, no. 5, pp. 261-280, 1999.
    • (1999) Transportation Research Part C: Emerging Technologies , vol.7 , Issue.5 , pp. 261-280
    • Abdulhai, B.1    Ritchie, S.G.2
  • 10
    • 67349260139 scopus 로고    scopus 로고
    • Construct support vector machine ensemble to detect traffic incident
    • Shuyan Cheng and W. Wang, "Construct support vector machine ensemble to detect traffic incident," Expert Systems with Applications, vol. 36, no. 8, pp. 10976-10986, 2009.
    • (2009) Expert Systems with Applications , vol.36 , Issue.8 , pp. 10976-10986
    • Cheng, S.1    Wang, W.2
  • 11
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • MIT Press
    • Rumelhart, D. E., G. E. Hinton, et al., "Learning internal representations by error propagation," in Parallel Distributed Processing I, MIT Press, 1986, pp. 318-362.
    • (1986) Parallel Distributed Processing I , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2
  • 12
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Bruno A. Olshausen and D. J. Field, "Emergence of simple-cell receptive field properties by learning a sparse code for natural images," Nature, vol. 281, no. 13, pp. 607-609, 1996.
    • (1996) Nature , vol.281 , Issue.13 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 14
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. Hinton, S. Osindero, et al., "A fast learning algorithm for deep belief nets," Neural Computation, vol. 18, no. 7, pp. 1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2
  • 21
    • 0033224817 scopus 로고    scopus 로고
    • Preprocessor Feature Extractor and Postprocessor Probabilistic Output Interpreter for Improved Freeway Incident Detection
    • Baher Abdulhai and S. G. Ritchie, "Preprocessor Feature Extractor and Postprocessor Probabilistic Output Interpreter for Improved Freeway Incident Detection," Transportation Research Record: Journal of the Transportation Research Board, vol. 1678, pp. 277-286, 1999.
    • (1999) Transportation Research Record: Journal of the Transportation Research Board , vol.1678 , pp. 277-286
    • Abdulhai, B.1    Ritchie, S.G.2
  • 22
    • 0033931867 scopus 로고    scopus 로고
    • Assessing the accuracy of prediction algorithms for classification: An overview
    • Pierre Baldi, Søren Brunak, et al., "Assessing the accuracy of prediction algorithms for classification: an overview," Bioinformatics, vol. 16, no. 5, pp. 412-424, 2000.
    • (2000) Bioinformatics , vol.16 , Issue.5 , pp. 412-424
    • Baldi, P.1    Brunak, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.