-
1
-
-
60749109846
-
Cell cycle, CDKs and cancer: a changing paradigm
-
Malumbres M, Barbacid M, (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9: 153-166.
-
(2009)
Nat Rev Cancer
, vol.9
, pp. 153-166
-
-
Malumbres, M.1
Barbacid, M.2
-
2
-
-
0030741972
-
Molecular analysis of a novel winged helix protein, WIN. Expression pattern, DNA binding property, and alternative splicing within the DNA binding domain
-
Yao KM, Sha M, Lu Z, Wong GG, (1997) Molecular analysis of a novel winged helix protein, WIN. Expression pattern, DNA binding property, and alternative splicing within the DNA binding domain. J Biol Chem 272: 19827-19836.
-
(1997)
J Biol Chem
, vol.272
, pp. 19827-19836
-
-
Yao, K.M.1
Sha, M.2
Lu, Z.3
Wong, G.G.4
-
3
-
-
13944281061
-
FoxM1 dances with mitosis
-
Costa RH, (2005) FoxM1 dances with mitosis. Nat Cell Biol 7: 108-110.
-
(2005)
Nat Cell Biol
, vol.7
, pp. 108-110
-
-
Costa, R.H.1
-
4
-
-
12344321465
-
New and unexpected: forkhead meets ARF
-
Costa RH, Kalinichenko VV, Major ML, Raychaudhuri P, (2005) New and unexpected: forkhead meets ARF. Curr Opin Genet Dev 15: 42-48.
-
(2005)
Curr Opin Genet Dev
, vol.15
, pp. 42-48
-
-
Costa, R.H.1
Kalinichenko, V.V.2
Major, M.L.3
Raychaudhuri, P.4
-
5
-
-
7544231164
-
The mouse Forkhead Box m1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ducts and vessels during liver morphogenesis
-
Krupczak-Hollis K, Wang X, Kalinichenko VV, Gusarova GA, Wang IC, et al. (2004) The mouse Forkhead Box m1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ducts and vessels during liver morphogenesis. Dev Biol 276: 74-88.
-
(2004)
Dev Biol
, vol.276
, pp. 74-88
-
-
Krupczak-Hollis, K.1
Wang, X.2
Kalinichenko, V.V.3
Gusarova, G.A.4
Wang, I.C.5
-
6
-
-
0037168526
-
The Forkhead Box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration
-
Wang X, Kiyokawa H, Dennewitz MB, Costa RH, (2002) The Forkhead Box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration. Proc Natl Acad Sci U S A 99: 16881-16886.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 16881-16886
-
-
Wang, X.1
Kiyokawa, H.2
Dennewitz, M.B.3
Costa, R.H.4
-
7
-
-
1642382817
-
Forkhead box M1B transcriptional activity requires binding of Cdk-cyclin complexes for phosphorylation-dependent recruitment of p300/CBP coactivators
-
Major ML, Lepe R, Costa RH, (2004) Forkhead box M1B transcriptional activity requires binding of Cdk-cyclin complexes for phosphorylation-dependent recruitment of p300/CBP coactivators. Mol Cell Biol 24: 2649-2661.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 2649-2661
-
-
Major, M.L.1
Lepe, R.2
Costa, R.H.3
-
8
-
-
14944357408
-
Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c
-
Ma RY, Tong TH, Cheung AM, Tsang AC, Leung WY, et al. (2005) Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. J Cell Sci 118: 795-806.
-
(2005)
J Cell Sci
, vol.118
, pp. 795-806
-
-
Ma, R.Y.1
Tong, T.H.2
Cheung, A.M.3
Tsang, A.C.4
Leung, W.Y.5
-
9
-
-
42349091078
-
Activation of FoxM1 during G2 requires cyclin A/Cdk-dependent relief of autorepression by the FoxM1 N-terminal domain
-
Laoukili J, Alvarez M, Meijer LA, Stahl M, Mohammed S, et al. (2008) Activation of FoxM1 during G2 requires cyclin A/Cdk-dependent relief of autorepression by the FoxM1 N-terminal domain. Mol Cell Biol 28: 3076-3087.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 3076-3087
-
-
Laoukili, J.1
Alvarez, M.2
Meijer, L.A.3
Stahl, M.4
Mohammed, S.5
-
10
-
-
28544449224
-
Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase
-
Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, et al. (2005) Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol 25: 10875-10894.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 10875-10894
-
-
Wang, I.C.1
Chen, Y.J.2
Hughes, D.3
Petrovic, V.4
Major, M.L.5
-
11
-
-
51049093614
-
FoxM1 regulates transcription of JNK1 to promote the G1/S transition and tumor cell invasiveness
-
Wang IC, Chen YJ, Hughes DE, Ackerson T, Major ML, et al. (2008) FoxM1 regulates transcription of JNK1 to promote the G1/S transition and tumor cell invasiveness. J Biol Chem 283: 20770-20778.
-
(2008)
J Biol Chem
, vol.283
, pp. 20770-20778
-
-
Wang, I.C.1
Chen, Y.J.2
Hughes, D.E.3
Ackerson, T.4
Major, M.L.5
-
12
-
-
77953230885
-
FoxM1 is a novel target of a natural agent in pancreatic cancer
-
Wang Z, Ahmad A, Banerjee S, Azmi A, Kong D, et al. (2010) FoxM1 is a novel target of a natural agent in pancreatic cancer. Pharm Res 27: 1159-1168.
-
(2010)
Pharm Res
, vol.27
, pp. 1159-1168
-
-
Wang, Z.1
Ahmad, A.2
Banerjee, S.3
Azmi, A.4
Kong, D.5
-
13
-
-
51049093989
-
Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression
-
Fu Z, Malureanu L, Huang J, Wang W, Li H, et al. (2008) Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nat Cell Biol 10: 1076-1082.
-
(2008)
Nat Cell Biol
, vol.10
, pp. 1076-1082
-
-
Fu, Z.1
Malureanu, L.2
Huang, J.3
Wang, W.4
Li, H.5
-
14
-
-
13944274222
-
FoxM1 is required for execution of the mitotic programme and chromosome stability
-
Laoukili J, Kooistra MR, Bras A, Kauw J, Kerkhoven RM, et al. (2005) FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat Cell Biol 7: 126-136.
-
(2005)
Nat Cell Biol
, vol.7
, pp. 126-136
-
-
Laoukili, J.1
Kooistra, M.R.2
Bras, A.3
Kauw, J.4
Kerkhoven, R.M.5
-
15
-
-
32944459113
-
Increased levels of the FoxM1 transcription factor accelerate development and progression of prostate carcinomas in both TRAMP and LADY transgenic mice
-
Kalin TV, Wang IC, Ackerson TJ, Major ML, Detrisac CJ, et al. (2006) Increased levels of the FoxM1 transcription factor accelerate development and progression of prostate carcinomas in both TRAMP and LADY transgenic mice. Cancer Res 66: 1712-1720.
-
(2006)
Cancer Res
, vol.66
, pp. 1712-1720
-
-
Kalin, T.V.1
Wang, I.C.2
Ackerson, T.J.3
Major, M.L.4
Detrisac, C.J.5
-
16
-
-
0035914037
-
Over-expression of FoxM1 stimulates cyclin B1 expression
-
Leung TW, Lin SS, Tsang AC, Tong CS, Ching JC, et al. (2001) Over-expression of FoxM1 stimulates cyclin B1 expression. FEBS Lett 507: 59-66.
-
(2001)
FEBS Lett
, vol.507
, pp. 59-66
-
-
Leung, T.W.1
Lin, S.S.2
Tsang, A.C.3
Tong, C.S.4
Ching, J.C.5
-
17
-
-
0141733085
-
Ubiquitous expression of the forkhead box M1B transgene accelerates proliferation of distinct pulmonary cell types following lung injury
-
Kalinichenko VV, Gusarova GA, Tan Y, Wang IC, Major ML, et al. (2003) Ubiquitous expression of the forkhead box M1B transgene accelerates proliferation of distinct pulmonary cell types following lung injury. J Biol Chem 278: 37888-37894.
-
(2003)
J Biol Chem
, vol.278
, pp. 37888-37894
-
-
Kalinichenko, V.V.1
Gusarova, G.A.2
Tan, Y.3
Wang, I.C.4
Major, M.L.5
-
18
-
-
20444477535
-
Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe
-
Wonsey DR, Follettie MT, (2005) Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res 65: 5181-5189.
-
(2005)
Cancer Res
, vol.65
, pp. 5181-5189
-
-
Wonsey, D.R.1
Follettie, M.T.2
-
19
-
-
35548930209
-
The emerging roles of forkhead box (Fox) proteins in cancer
-
Myatt SS, Lam EW, (2007) The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 7: 847-859.
-
(2007)
Nat Rev Cancer
, vol.7
, pp. 847-859
-
-
Myatt, S.S.1
Lam, E.W.2
-
20
-
-
0025936510
-
cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2
-
Gautier J, Solomon MJ, Booher RN, Bazan JF, Kirschner MW, (1991) cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 67: 197-211.
-
(1991)
Cell
, vol.67
, pp. 197-211
-
-
Gautier, J.1
Solomon, M.J.2
Booher, R.N.3
Bazan, J.F.4
Kirschner, M.W.5
-
21
-
-
0025987535
-
p80cdc25 mitotic inducer is the tyrosine phosphatase that activates p34cdc2 kinase in fission yeast
-
Millar JB, McGowan CH, Lenaers G, Jones R, Russell P, (1991) p80cdc25 mitotic inducer is the tyrosine phosphatase that activates p34cdc2 kinase in fission yeast. EMBO J 10: 4301-4309.
-
(1991)
EMBO J
, vol.10
, pp. 4301-4309
-
-
Millar, J.B.1
McGowan, C.H.2
Lenaers, G.3
Jones, R.4
Russell, P.5
-
22
-
-
0027082665
-
cdc25+ encodes a protein phosphatase that dephosphorylates p34cdc2
-
Lee MS, Ogg S, Xu M, Parker LL, Donoghue DJ, et al. (1992) cdc25+ encodes a protein phosphatase that dephosphorylates p34cdc2. Mol Biol Cell 3: 73-84.
-
(1992)
Mol Biol Cell
, vol.3
, pp. 73-84
-
-
Lee, M.S.1
Ogg, S.2
Xu, M.3
Parker, L.L.4
Donoghue, D.J.5
-
23
-
-
0032766844
-
Ectopic expression of Cdc25A accelerates the G(1)/S transition and leads to premature activation of cyclin E- and cyclin A-dependent kinases
-
Blomberg I, Hoffmann I, (1999) Ectopic expression of Cdc25A accelerates the G(1)/S transition and leads to premature activation of cyclin E- and cyclin A-dependent kinases. Mol Cell Biol 19: 6183-6194.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 6183-6194
-
-
Blomberg, I.1
Hoffmann, I.2
-
24
-
-
0028022034
-
Activation of the phosphatase activity of human cdc25A by a cdk2-cyclin E dependent phosphorylation at the G1/S transition
-
Hoffmann I, Draetta G, Karsenti E, (1994) Activation of the phosphatase activity of human cdc25A by a cdk2-cyclin E dependent phosphorylation at the G1/S transition. EMBO J 13: 4302-4310.
-
(1994)
EMBO J
, vol.13
, pp. 4302-4310
-
-
Hoffmann, I.1
Draetta, G.2
Karsenti, E.3
-
25
-
-
26444493574
-
Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1-Cdk1 at the centrosome
-
Lindqvist A, Kallstrom H, Lundgren A, Barsoum E, Rosenthal CK, (2005) Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1-Cdk1 at the centrosome. J Cell Biol 171: 35-45.
-
(2005)
J Cell Biol
, vol.171
, pp. 35-45
-
-
Lindqvist, A.1
Kallstrom, H.2
Lundgren, A.3
Barsoum, E.4
Rosenthal, C.K.5
-
27
-
-
78649781549
-
Activation of the p38 MAPK/Akt/ERK1/2 signal pathways is required for the protein stabilization of CDC6 and cyclin D1 in low-dose arsenite-induced cell proliferation
-
Liu Y, Hock JM, Sullivan C, Fang G, Cox AJ, et al. (2010) Activation of the p38 MAPK/Akt/ERK1/2 signal pathways is required for the protein stabilization of CDC6 and cyclin D1 in low-dose arsenite-induced cell proliferation. J Cell Biochem 111: 1546-1555.
-
(2010)
J Cell Biochem
, vol.111
, pp. 1546-1555
-
-
Liu, Y.1
Hock, J.M.2
Sullivan, C.3
Fang, G.4
Cox, A.J.5
-
28
-
-
20144387357
-
Gene therapy for prostate cancer by controlling adenovirus E1a and E4 gene expression with PSES enhancer
-
Li X, Zhang YP, Kim HS, Bae KH, Stantz KM, et al. (2005) Gene therapy for prostate cancer by controlling adenovirus E1a and E4 gene expression with PSES enhancer. Cancer Res 65: 1941-1951.
-
(2005)
Cancer Res
, vol.65
, pp. 1941-1951
-
-
Li, X.1
Zhang, Y.P.2
Kim, H.S.3
Bae, K.H.4
Stantz, K.M.5
-
29
-
-
33947670019
-
Evidence for evolving Toll-IL-1 receptor-containing adaptor molecule function in vertebrates
-
Sullivan C, Postlethwait JH, Lage CR, Millard PJ, Kim CH, (2007) Evidence for evolving Toll-IL-1 receptor-containing adaptor molecule function in vertebrates. J Immunol 178: 4517-4527.
-
(2007)
J Immunol
, vol.178
, pp. 4517-4527
-
-
Sullivan, C.1
Postlethwait, J.H.2
Lage, C.R.3
Millard, P.J.4
Kim, C.H.5
-
30
-
-
0344931628
-
CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase
-
Vigo E, Muller H, Prosperini E, Hateboer G, Cartwright P, et al. (1999) CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase. Mol Cell Biol 19: 6379-6395.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 6379-6395
-
-
Vigo, E.1
Muller, H.2
Prosperini, E.3
Hateboer, G.4
Cartwright, P.5
-
31
-
-
34250865564
-
CDC25 phosphatases in cancer cells: key players? Good targets?
-
Boutros R, Lobjois V, Ducommun B, (2007) CDC25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer 7: 495-507.
-
(2007)
Nat Rev Cancer
, vol.7
, pp. 495-507
-
-
Boutros, R.1
Lobjois, V.2
Ducommun, B.3
-
32
-
-
0033000779
-
Serum-induced expression of the cdc25A gene by relief of E2F-mediated repression
-
Chen X, Prywes R, (1999) Serum-induced expression of the cdc25A gene by relief of E2F-mediated repression. Mol Cell Biol 19: 4695-4702.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 4695-4702
-
-
Chen, X.1
Prywes, R.2
-
33
-
-
0035012326
-
p300 forms a stable, template-committed complex with chromatin: role for the bromodomain
-
Manning ET, Ikehara T, Ito T, Kadonaga JT, Kraus WL, (2001) p300 forms a stable, template-committed complex with chromatin: role for the bromodomain. Mol Cell Biol 21: 3876-3887.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 3876-3887
-
-
Manning, E.T.1
Ikehara, T.2
Ito, T.3
Kadonaga, J.T.4
Kraus, W.L.5
-
34
-
-
0028314952
-
Cdc25A is a novel phosphatase functioning early in the cell cycle
-
Jinno S, Suto K, Nagata A, Igarashi M, Kanaoka Y, et al. (1994) Cdc25A is a novel phosphatase functioning early in the cell cycle. EMBO J 13: 1549-1556.
-
(1994)
EMBO J
, vol.13
, pp. 1549-1556
-
-
Jinno, S.1
Suto, K.2
Nagata, A.3
Igarashi, M.4
Kanaoka, Y.5
-
35
-
-
33847308224
-
Inhibiting transient protein-protein interactions: lessons from the Cdc25 protein tyrosine phosphatases
-
Rudolph J, (2007) Inhibiting transient protein-protein interactions: lessons from the Cdc25 protein tyrosine phosphatases. Nat Rev Cancer 7: 202-211.
-
(2007)
Nat Rev Cancer
, vol.7
, pp. 202-211
-
-
Rudolph, J.1
-
36
-
-
0142027900
-
Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding
-
Chen MS, Ryan CE, Piwnica-Worms H, (2003) Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding. Mol Cell Biol 23: 7488-7497.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 7488-7497
-
-
Chen, M.S.1
Ryan, C.E.2
Piwnica-Worms, H.3
-
37
-
-
0344393475
-
Distinct modes of deregulation of the proto-oncogenic Cdc25A phosphatase in human breast cancer cell lines
-
Loffler H, Syljuasen RG, Bartkova J, Worm J, Lukas J, et al. (2003) Distinct modes of deregulation of the proto-oncogenic Cdc25A phosphatase in human breast cancer cell lines. Oncogene 22: 8063-8071.
-
(2003)
Oncogene
, vol.22
, pp. 8063-8071
-
-
Loffler, H.1
Syljuasen, R.G.2
Bartkova, J.3
Worm, J.4
Lukas, J.5
-
38
-
-
0037192864
-
The catalytic mechanism of Cdc25A phosphatase
-
McCain DF, Catrina IE, Hengge AC, Zhang ZY, (2002) The catalytic mechanism of Cdc25A phosphatase. J Biol Chem 277: 11190-11200.
-
(2002)
J Biol Chem
, vol.277
, pp. 11190-11200
-
-
McCain, D.F.1
Catrina, I.E.2
Hengge, A.C.3
Zhang, Z.Y.4
-
39
-
-
0029981395
-
Roles of active site residues and the NH2-terminal domain in the catalysis and substrate binding of human Cdc25
-
Xu X, Burke SP, (1996) Roles of active site residues and the NH2-terminal domain in the catalysis and substrate binding of human Cdc25. J Biol Chem 271: 5118-5124.
-
(1996)
J Biol Chem
, vol.271
, pp. 5118-5124
-
-
Xu, X.1
Burke, S.P.2
-
40
-
-
4344718628
-
Cdc25 phosphatases and cancer
-
Kristjansdottir K, Rudolph J, (2004) Cdc25 phosphatases and cancer. Chem Biol 11: 1043-1051.
-
(2004)
Chem Biol
, vol.11
, pp. 1043-1051
-
-
Kristjansdottir, K.1
Rudolph, J.2
-
42
-
-
0029779280
-
Cdc25 cell-cycle phosphatase as a target of c-myc
-
Galaktionov K, Chen X, Beach D, (1996) Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 382: 511-517.
-
(1996)
Nature
, vol.382
, pp. 511-517
-
-
Galaktionov, K.1
Chen, X.2
Beach, D.3
-
43
-
-
76149132685
-
Generic binding sites, generic DNA-binding domains: where does specific promoter recognition come from?
-
Georges AB, Benayoun BA, Caburet S, Veitia RA, (2010) Generic binding sites, generic DNA-binding domains: where does specific promoter recognition come from? FASEB J 24: 346-356.
-
(2010)
FASEB J
, vol.24
, pp. 346-356
-
-
Georges, A.B.1
Benayoun, B.A.2
Caburet, S.3
Veitia, R.A.4
-
44
-
-
0030738479
-
Distinct roles for E2F proteins in cell growth control and apoptosis
-
DeGregori J, Leone G, Miron A, Jakoi L, Nevins JR, (1997) Distinct roles for E2F proteins in cell growth control and apoptosis. Proc Natl Acad Sci U S A 94: 7245-7250.
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 7245-7250
-
-
DeGregori, J.1
Leone, G.2
Miron, A.3
Jakoi, L.4
Nevins, J.R.5
-
45
-
-
71049124037
-
A conserved phosphorylation site within the forkhead domain of FoxM1B is required for its activation by cyclin-CDK1
-
Chen YJ, Dominguez-Brauer C, Wang Z, Asara JM, Costa RH, et al. (2009) A conserved phosphorylation site within the forkhead domain of FoxM1B is required for its activation by cyclin-CDK1. J Biol Chem 284: 30695-30707.
-
(2009)
J Biol Chem
, vol.284
, pp. 30695-30707
-
-
Chen, Y.J.1
Dominguez-Brauer, C.2
Wang, Z.3
Asara, J.M.4
Costa, R.H.5
-
46
-
-
33746780589
-
FOXM1c is activated by cyclin E/Cdk2, cyclin A/Cdk2, and cyclin A/Cdk1, but repressed by GSK-3alpha
-
Wierstra I, Alves J, (2006) FOXM1c is activated by cyclin E/Cdk2, cyclin A/Cdk2, and cyclin A/Cdk1, but repressed by GSK-3alpha. Biochem Biophys Res Commun 348: 99-108.
-
(2006)
Biochem Biophys Res Commun
, vol.348
, pp. 99-108
-
-
Wierstra, I.1
Alves, J.2
-
47
-
-
33746216564
-
Transcription factor FOXM1c is repressed by RB and activated by cyclin D1/Cdk4
-
Wierstra I, Alves J, (2006) Transcription factor FOXM1c is repressed by RB and activated by cyclin D1/Cdk4. Biol Chem 387: 949-962.
-
(2006)
Biol Chem
, vol.387
, pp. 949-962
-
-
Wierstra, I.1
Alves, J.2
-
48
-
-
0025734356
-
Human cyclin E, a new cyclin that interacts with two members of the CDC2 gene family
-
Koff A, Cross F, Fisher A, Schumacher J, Leguellec K, et al. (1991) Human cyclin E, a new cyclin that interacts with two members of the CDC2 gene family. Cell 66: 1217-1228.
-
(1991)
Cell
, vol.66
, pp. 1217-1228
-
-
Koff, A.1
Cross, F.2
Fisher, A.3
Schumacher, J.4
Leguellec, K.5
-
49
-
-
0030925231
-
Cyclin E-CDK2 is a regulator of p27Kip1
-
Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE, (1997) Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev 11: 1464-1478.
-
(1997)
Genes Dev
, vol.11
, pp. 1464-1478
-
-
Sheaff, R.J.1
Groudine, M.2
Gordon, M.3
Roberts, J.M.4
Clurman, B.E.5
-
50
-
-
23144465155
-
Cdk1: the dominant sibling of Cdk2
-
Bashir T, Pagano M, (2005) Cdk1: the dominant sibling of Cdk2. Nat Cell Biol 7: 779-781.
-
(2005)
Nat Cell Biol
, vol.7
, pp. 779-781
-
-
Bashir, T.1
Pagano, M.2
|