-
1
-
-
20844435854
-
Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
-
G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering, 17(6):734-749, 2005.
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.6
, pp. 734-749
-
-
Adomavicius, G.1
Tuzhilin, A.2
-
2
-
-
0000581356
-
An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression
-
Aug.
-
N. S. Altman. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. The American Statistician, 46(3):175, Aug. 1992.
-
(1992)
The American Statistician
, vol.46
, Issue.3
, pp. 175
-
-
Altman, N.S.1
-
3
-
-
57349146373
-
Lessons from the Netflix Prize Challenge
-
R. M. Bell and Y. Koren. Lessons from the Netflix Prize Challenge. SIGKDD Explorations, 9(2):75-79, 2007.
-
(2007)
SIGKDD Explorations
, vol.9
, Issue.2
, pp. 75-79
-
-
Bell, R.M.1
Koren, Y.2
-
6
-
-
72249099662
-
Measuring Predictive Capability in Collaborative Filtering
-
L. M. D. Campos, J. M. Fernández-luna, J. F. Huete, and M. A. Rueda-morales. Measuring Predictive Capability in Collaborative Filtering. In Proceedings of the 3rd ACM Conference on Recommender Systems, pages 313-316, 2009.
-
(2009)
Proceedings of the 3rd ACM Conference on Recommender Systems
, pp. 313-316
-
-
Campos, L.M.D.1
Fernández-luna, J.M.2
Huete, J.F.3
Rueda-morales, M.A.4
-
9
-
-
78049304755
-
A Novel Approach to Compute Similarities and Its Application to Item Recommendation
-
C. Desrosiers and G. Karypis. A Novel Approach to Compute Similarities and Its Application to Item Recommendation. In Proceeding of PRICAI 2010, pages 39-51, 2010.
-
(2010)
Proceeding of PRICAI 2010
, pp. 39-51
-
-
Desrosiers, C.1
Karypis, G.2
-
10
-
-
81055135842
-
-
Chapter 4 chapter 4, Springer US, Boston, MA
-
C. Desrosiers and G. Karypis. Chapter 4 A comprehensive Survey of Neighborhood-based Recommendation Methods, chapter 4, pages 107-144. Springer US, Boston, MA, 2011.
-
(2011)
A Comprehensive Survey of Neighborhood-based Recommendation Methods
, pp. 107-144
-
-
Desrosiers, C.1
Karypis, G.2
-
11
-
-
0342707562
-
Learning binary relations using weighted majority voting
-
Sept.
-
S. a. Goldman and M. K. Warmuth. Learning binary relations using weighted majority voting. Machine Learning, 20(3):245-271, Sept. 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 245-271
-
-
Goldman, S.A.1
Warmuth, M.K.2
-
12
-
-
65449121157
-
Factorization meets the neighborhood: A multifaceted collaborative filtering model
-
ACM
-
Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In SIGKDD 2008, pages 426-434. ACM, 2008.
-
(2008)
SIGKDD 2008
, pp. 426-434
-
-
Koren, Y.1
-
13
-
-
72249094333
-
Exploiting User Similarity based on Rated-Item Pools for Improved User-based Collaborative Filtering
-
M. Larson and A. Hanjalic. Exploiting User Similarity based on Rated-Item Pools for Improved User-based Collaborative Filtering. In Proceedings of the 3rd ACM Conference on Recommender Systems, pages 125-132, 2009.
-
(2009)
Proceedings of the 3rd ACM Conference on Recommender Systems
, pp. 125-132
-
-
Larson, M.1
Hanjalic, A.2
-
14
-
-
84880129466
-
Slope one predictors for online rating-based collaborative filtering
-
D. Lemire and A. Maclachlan. Slope one predictors for online rating-based collaborative filtering. In In SIAM Data Mining (SDM'05), volume 05, 2005.
-
(2005)
SIAM Data Mining (SDM'05)
, vol.5
-
-
Lemire, D.1
Maclachlan, A.2
-
15
-
-
84952497143
-
Missing-data adjustments in large surveys
-
R. Little. Missing-data adjustments in large surveys. Journal of Business & Economic Statistics, 6(3):287-296, 1988.
-
(1988)
Journal of Business & Economic Statistics
, vol.6
, Issue.3
, pp. 287-296
-
-
Little, R.1
-
16
-
-
36448972659
-
Effective missing data prediction for collaborative filtering
-
New York, New York, USA, ACM Press
-
H. Ma, I. King, and M. R. Lyu. Effective missing data prediction for collaborative filtering. In SIGIR 2007, pages 39-46, New York, New York, USA, 2007. ACM Press.
-
(2007)
SIGIR 2007
, pp. 39-46
-
-
Ma, H.1
King, I.2
Lyu, M.R.3
-
17
-
-
8644228708
-
A Collaborative Filtering Algorithm and Evaluation Metric that Accurately Model the User Experience
-
M. R. Mclaughlin and J. L. Herlocker. A Collaborative Filtering Algorithm and Evaluation Metric that Accurately Model the User Experience. Proceeding of SIGIR 2004, 2004.
-
(2004)
Proceeding of SIGIR 2004
-
-
McLaughlin, M.R.1
Herlocker, J.L.2
-
19
-
-
85030174634
-
GroupLens: An Open Architecture for Collaborative Filtering of Netnews
-
P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. GroupLens : An Open Architecture for Collaborative Filtering of Netnews. In ACM Conference on Computer Supported Cooperative Work, pages 175-186, 1994.
-
(1994)
ACM Conference on Computer Supported Cooperative Work
, pp. 175-186
-
-
Resnick, P.1
Iacovou, N.2
Suchak, M.3
Bergstrom, P.4
Riedl, J.5
-
22
-
-
85052617391
-
Item-based collaborative filtering recommendation algorithms
-
ACM
-
B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web, pages 285-295. ACM, 2001.
-
(2001)
Proceedings of the 10th International Conference on World Wide Web
, pp. 285-295
-
-
Sarwar, B.1
Karypis, G.2
Konstan, J.3
Reidl, J.4
-
23
-
-
55849109602
-
A Mixture Imputation-Boosted Collaborative Filter
-
X. Su and R. Greiner. A Mixture Imputation-Boosted Collaborative Filter. Artificial Intelligence, pages 312-317, 2008.
-
(2008)
Artificial Intelligence
, pp. 312-317
-
-
Su, X.1
Greiner, R.2
-
25
-
-
62949181396
-
Imputed Neighborhood Based Collaborative Filtering
-
IEEE
-
X. Su, T. Khoshgoftaar, and R. Greiner. Imputed Neighborhood Based Collaborative Filtering. In Web intelligence 2008, volume 1, pages 633-639. IEEE, 2008.
-
(2008)
Web Intelligence 2008
, vol.1
, pp. 633-639
-
-
Su, X.1
Khoshgoftaar, T.2
Greiner, R.3
-
26
-
-
56749179344
-
Imputation-boosted collaborative filtering using machine learning classifiers
-
X. Su, T. M. Khoshgoftaar, X. Zhu, and R. Greiner. Imputation-boosted collaborative filtering using machine learning classifiers. Proceedings of the 2008 ACM symposium on Applied computing - SAC '08, (2):949, 2008.
-
(2008)
Proceedings of the 2008 ACM Symposium on Applied Computing - SAC '08
, Issue.2
, pp. 949
-
-
Su, X.1
Khoshgoftaar, T.M.2
Zhu, X.3
Greiner, R.4
-
27
-
-
33750345680
-
Unifying user-based and item-based collaborative filtering approaches by similarity fusion
-
New York, New York, USA, ACM Press
-
J. Wang, A. P. de Vries, and M. J. T. Reinders. Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In SIGIR 2006, pages 501-208, New York, New York, USA, 2006. ACM Press.
-
(2006)
SIGIR 2006
, pp. 501-1208
-
-
Wang, J.1
De Vries, A.P.2
Reinders, M.J.T.3
-
28
-
-
84885578920
-
Scalable collaborative filtering using cluster-based smoothing
-
New York, New York, USA, ACM Press
-
G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu, and Z. Chen. Scalable collaborative filtering using cluster-based smoothing. In SIGIR 2005, pages 114-121, New York, New York, USA, 2005. ACM Press.
-
(2005)
SIGIR 2005
, pp. 114-121
-
-
Xue, G.-R.1
Lin, C.2
Yang, Q.3
Xi, W.4
Zeng, H.-J.5
Yu, Y.6
Chen, Z.7
-
29
-
-
84871098692
-
Network Traffic Classification Using Correlation information
-
J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, and Y. Guan. Network Traffic Classification Using Correlation information. IEEE Transaction on Parallel and Distributed Systems, 2012.
-
(2012)
IEEE Transaction on Parallel and Distributed Systems
-
-
Zhang, J.1
Xiang, Y.2
Wang, Y.3
Zhou, W.4
Xiang, Y.5
Guan, Y.6
|