메뉴 건너뛰기




Volumn , Issue , 2012, Pages 684-693

The efficient imputation method for neighborhood-based collaborative filtering

Author keywords

collaborative filtering; imputation; recommender systems

Indexed keywords

COLLABORATIVE FILTERING; COLLABORATIVE FILTERING ALGORITHMS; COLLABORATIVE FILTERING METHODS; DATA SPARSITY; IMPUTATION; IMPUTATION METHODS; MISSING VALUES; PEARSON CORRELATION COEFFICIENTS; SIMILARITY METRICS;

EID: 84871071762     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2396761.2396849     Document Type: Conference Paper
Times cited : (38)

References (29)
  • 1
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering, 17(6):734-749, 2005.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 2
    • 0000581356 scopus 로고
    • An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression
    • Aug.
    • N. S. Altman. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. The American Statistician, 46(3):175, Aug. 1992.
    • (1992) The American Statistician , vol.46 , Issue.3 , pp. 175
    • Altman, N.S.1
  • 3
    • 57349146373 scopus 로고    scopus 로고
    • Lessons from the Netflix Prize Challenge
    • R. M. Bell and Y. Koren. Lessons from the Netflix Prize Challenge. SIGKDD Explorations, 9(2):75-79, 2007.
    • (2007) SIGKDD Explorations , vol.9 , Issue.2 , pp. 75-79
    • Bell, R.M.1    Koren, Y.2
  • 9
    • 78049304755 scopus 로고    scopus 로고
    • A Novel Approach to Compute Similarities and Its Application to Item Recommendation
    • C. Desrosiers and G. Karypis. A Novel Approach to Compute Similarities and Its Application to Item Recommendation. In Proceeding of PRICAI 2010, pages 39-51, 2010.
    • (2010) Proceeding of PRICAI 2010 , pp. 39-51
    • Desrosiers, C.1    Karypis, G.2
  • 11
    • 0342707562 scopus 로고
    • Learning binary relations using weighted majority voting
    • Sept.
    • S. a. Goldman and M. K. Warmuth. Learning binary relations using weighted majority voting. Machine Learning, 20(3):245-271, Sept. 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 245-271
    • Goldman, S.A.1    Warmuth, M.K.2
  • 12
    • 65449121157 scopus 로고    scopus 로고
    • Factorization meets the neighborhood: A multifaceted collaborative filtering model
    • ACM
    • Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In SIGKDD 2008, pages 426-434. ACM, 2008.
    • (2008) SIGKDD 2008 , pp. 426-434
    • Koren, Y.1
  • 13
    • 72249094333 scopus 로고    scopus 로고
    • Exploiting User Similarity based on Rated-Item Pools for Improved User-based Collaborative Filtering
    • M. Larson and A. Hanjalic. Exploiting User Similarity based on Rated-Item Pools for Improved User-based Collaborative Filtering. In Proceedings of the 3rd ACM Conference on Recommender Systems, pages 125-132, 2009.
    • (2009) Proceedings of the 3rd ACM Conference on Recommender Systems , pp. 125-132
    • Larson, M.1    Hanjalic, A.2
  • 14
    • 84880129466 scopus 로고    scopus 로고
    • Slope one predictors for online rating-based collaborative filtering
    • D. Lemire and A. Maclachlan. Slope one predictors for online rating-based collaborative filtering. In In SIAM Data Mining (SDM'05), volume 05, 2005.
    • (2005) SIAM Data Mining (SDM'05) , vol.5
    • Lemire, D.1    Maclachlan, A.2
  • 15
    • 84952497143 scopus 로고
    • Missing-data adjustments in large surveys
    • R. Little. Missing-data adjustments in large surveys. Journal of Business & Economic Statistics, 6(3):287-296, 1988.
    • (1988) Journal of Business & Economic Statistics , vol.6 , Issue.3 , pp. 287-296
    • Little, R.1
  • 16
    • 36448972659 scopus 로고    scopus 로고
    • Effective missing data prediction for collaborative filtering
    • New York, New York, USA, ACM Press
    • H. Ma, I. King, and M. R. Lyu. Effective missing data prediction for collaborative filtering. In SIGIR 2007, pages 39-46, New York, New York, USA, 2007. ACM Press.
    • (2007) SIGIR 2007 , pp. 39-46
    • Ma, H.1    King, I.2    Lyu, M.R.3
  • 17
    • 8644228708 scopus 로고    scopus 로고
    • A Collaborative Filtering Algorithm and Evaluation Metric that Accurately Model the User Experience
    • M. R. Mclaughlin and J. L. Herlocker. A Collaborative Filtering Algorithm and Evaluation Metric that Accurately Model the User Experience. Proceeding of SIGIR 2004, 2004.
    • (2004) Proceeding of SIGIR 2004
    • McLaughlin, M.R.1    Herlocker, J.L.2
  • 23
    • 55849109602 scopus 로고    scopus 로고
    • A Mixture Imputation-Boosted Collaborative Filter
    • X. Su and R. Greiner. A Mixture Imputation-Boosted Collaborative Filter. Artificial Intelligence, pages 312-317, 2008.
    • (2008) Artificial Intelligence , pp. 312-317
    • Su, X.1    Greiner, R.2
  • 25
    • 62949181396 scopus 로고    scopus 로고
    • Imputed Neighborhood Based Collaborative Filtering
    • IEEE
    • X. Su, T. Khoshgoftaar, and R. Greiner. Imputed Neighborhood Based Collaborative Filtering. In Web intelligence 2008, volume 1, pages 633-639. IEEE, 2008.
    • (2008) Web Intelligence 2008 , vol.1 , pp. 633-639
    • Su, X.1    Khoshgoftaar, T.2    Greiner, R.3
  • 27
    • 33750345680 scopus 로고    scopus 로고
    • Unifying user-based and item-based collaborative filtering approaches by similarity fusion
    • New York, New York, USA, ACM Press
    • J. Wang, A. P. de Vries, and M. J. T. Reinders. Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In SIGIR 2006, pages 501-208, New York, New York, USA, 2006. ACM Press.
    • (2006) SIGIR 2006 , pp. 501-1208
    • Wang, J.1    De Vries, A.P.2    Reinders, M.J.T.3
  • 28
    • 84885578920 scopus 로고    scopus 로고
    • Scalable collaborative filtering using cluster-based smoothing
    • New York, New York, USA, ACM Press
    • G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu, and Z. Chen. Scalable collaborative filtering using cluster-based smoothing. In SIGIR 2005, pages 114-121, New York, New York, USA, 2005. ACM Press.
    • (2005) SIGIR 2005 , pp. 114-121
    • Xue, G.-R.1    Lin, C.2    Yang, Q.3    Xi, W.4    Zeng, H.-J.5    Yu, Y.6    Chen, Z.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.