메뉴 건너뛰기




Volumn , Issue , 2004, Pages 329-336

A collaborative filtering algorithm and evaluation metric that accurately model the user experience

Author keywords

Algorithms; Collaborative filtering; Evaluation; Machine learning; Mean absolute error; Nearest neighbor; Precision; Recommender systems

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; LEARNING SYSTEMS; MATHEMATICAL MODELS; PROBLEM SOLVING; WORLD WIDE WEB;

EID: 8644228708     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1008992.1009050     Document Type: Conference Paper
Times cited : (292)

References (9)
  • 3
    • 3042829247 scopus 로고    scopus 로고
    • An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms
    • Herlocker, J. L., Konstan, J. A., Riedl, J., 2002. An Empirical Analysis of Design Choices in Neighborhood-based Collaborative Filtering Algorithms. Information Retrieval, 5 287-310.
    • (2002) Information Retrieval , vol.5 , pp. 287-310
    • Herlocker, J.L.1    Konstan, J.A.2    Riedl, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.