메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1602-1606

If you are happy and you know it... tweet

Author keywords

bayes classification; compressed learning; sparse modeling; supervised learning; svm; twitter sentiment analysis

Indexed keywords

BAYES CLASSIFICATION; CLASSIFICATION ACCURACY; CLASSIFICATION RESULTS; COMPRESSED LEARNING; LENGTH CONSTRAINTS; LOW-DIMENSIONAL SPACES; RANDOM PROJECTIONS; SENTIMENT ANALYSIS; SOCIAL MEDIA; SVM;

EID: 84871071465     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2396761.2398481     Document Type: Conference Paper
Times cited : (36)

References (19)
  • 3
    • 80053418268 scopus 로고    scopus 로고
    • Robust sentiment detection on twitter from biased and noisy data
    • L. Barbosa and J. Feng. Robust sentiment detection on twitter from biased and noisy data. In COLING, pages 36-44, 2010.
    • (2010) COLING , pp. 36-44
    • Barbosa, L.1    Feng, J.2
  • 5
    • 79953102821 scopus 로고    scopus 로고
    • Twitter mood predicts the stock market
    • J. Bollen, H. Mao, and X. Zeng. Twitter mood predicts the stock market. J. Computat. Science, 2(1):1-8, 2011.
    • (2011) J. Computat. Science , vol.2 , Issue.1 , pp. 1-8
    • Bollen, J.1    Mao, H.2    Zeng, X.3
  • 6
    • 85113590917 scopus 로고    scopus 로고
    • Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena
    • J. Bollen, A. Pepe, and H. Mao. Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. In ICWSM, 2011.
    • (2011) ICWSM
    • Bollen, J.1    Pepe, A.2    Mao, H.3
  • 7
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • A. Bruckstein, D. Donoho, and M. Elad. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review, 51(1):34-81, 2009.
    • (2009) SIAM Review , vol.51 , Issue.1 , pp. 34-81
    • Bruckstein, A.1    Donoho, D.2    Elad, M.3
  • 9
    • 82855168069 scopus 로고    scopus 로고
    • Temporal patterns of happiness and information in a global social network: Hedonometrics and Twitter
    • P. Dodds, K. Harris, I. Kloumann, C. Bliss, and C. Danforth. Temporal patterns of happiness and information in a global social network: hedonometrics and Twitter. PLoS ONE, 6(12):e26752, 2011.
    • (2011) PLoS ONE , vol.6 , Issue.12
    • Dodds, P.1    Harris, K.2    Kloumann, I.3    Bliss, C.4    Danforth, C.5
  • 11
    • 80053345545 scopus 로고    scopus 로고
    • Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures
    • S. Golder and M. Macy. Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science, 333(6051):1878-1881, 2011.
    • (2011) Science , vol.333 , Issue.6051 , pp. 1878-1881
    • Golder, S.1    Macy, M.2
  • 12
    • 77956528679 scopus 로고    scopus 로고
    • Multi-label prediction via compressed sensing
    • D. Hsu, S. Kakade, J. Langford, and T. Zhang. Multi-label prediction via compressed sensing. In NIPS. 2009.
    • (2009) NIPS
    • Hsu, D.1    Kakade, S.2    Langford, J.3    Zhang, T.4
  • 13
    • 83055184650 scopus 로고    scopus 로고
    • Target-dependent twitter sentiment classification
    • L. Jiang, M. Yu, M. Zhou, X. Liu, and T. Zhao. Target-dependent twitter sentiment classification. In ACL HLT, volume 1, pages 151-160, 2011.
    • (2011) ACL HLT , vol.1 , pp. 151-160
    • Jiang, L.1    Yu, M.2    Zhou, M.3    Liu, X.4    Zhao, T.5
  • 14
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • K. Nigam, A. K. Mccallum, S. Thrun, and T. Mitchell. Text classification from labeled and unlabeled documents using EM. Machine Learning, 39(2):103-134, 2000.
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 103-134
    • Nigam, K.1    Mccallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 15
    • 85028156346 scopus 로고    scopus 로고
    • Twitter as a corpus for sentiment analysis and opinion mining
    • A. Pak and P. Paroubek. Twitter as a corpus for sentiment analysis and opinion mining. In LREC, 2010.
    • (2010) LREC
    • Pak, A.1    Paroubek, P.2
  • 16
    • 48449095896 scopus 로고    scopus 로고
    • Opinion mining and sentiment analysis
    • B. Pang and L. Lee. Opinion mining and sentiment analysis. Found. Trends Inf. Retr., 2(1-2):1-135, 2008.
    • (2008) Found. Trends Inf. Retr. , vol.2 , Issue.1-2 , pp. 1-135
    • Pang, B.1    Lee, L.2
  • 17
    • 77955994663 scopus 로고    scopus 로고
    • Classification and clustering via dictionary learning with structured incoherence and shared features
    • I. Ramirez, P. Sprechmann, and G. Sapiro. Classification and clustering via dictionary learning with structured incoherence and shared features. In CVPR, pages 3501-3508, 2010.
    • (2010) CVPR , pp. 3501-3508
    • Ramirez, I.1    Sprechmann, P.2    Sapiro, G.3
  • 19
    • 33745935185 scopus 로고    scopus 로고
    • Weighted support vector machine for data classification
    • X. Yang, Q. Song, and A. Cao. Weighted support vector machine for data classification. In IJCNN, volume 2, pages 859-864, 2005.
    • (2005) IJCNN , vol.2 , pp. 859-864
    • Yang, X.1    Song, Q.2    Cao, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.