-
1
-
-
84856343452
-
Sentiment analysis of twitter data
-
A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. Passonneau. Sentiment analysis of twitter data. In LSM, pages 30-38, 2011.
-
(2011)
LSM
, pp. 30-38
-
-
Agarwal, A.1
Xie, B.2
Vovsha, I.3
Rambow, O.4
Passonneau, R.5
-
2
-
-
84871096933
-
-
Technical Report 12-017, University of Minnesota
-
A. Asiaee Taheri, M. Tepper, A. Banerjee, and G. Sapiro. If you are happy and know it ... tweet. Technical Report 12-017, University of Minnesota, 2012.
-
(2012)
If You Are Happy and Know It... Tweet
-
-
Asiaee Taheri, A.1
Tepper, M.2
Banerjee, A.3
Sapiro, G.4
-
3
-
-
80053418268
-
Robust sentiment detection on twitter from biased and noisy data
-
L. Barbosa and J. Feng. Robust sentiment detection on twitter from biased and noisy data. In COLING, pages 36-44, 2010.
-
(2010)
COLING
, pp. 36-44
-
-
Barbosa, L.1
Feng, J.2
-
5
-
-
79953102821
-
Twitter mood predicts the stock market
-
J. Bollen, H. Mao, and X. Zeng. Twitter mood predicts the stock market. J. Computat. Science, 2(1):1-8, 2011.
-
(2011)
J. Computat. Science
, vol.2
, Issue.1
, pp. 1-8
-
-
Bollen, J.1
Mao, H.2
Zeng, X.3
-
6
-
-
85113590917
-
Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena
-
J. Bollen, A. Pepe, and H. Mao. Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. In ICWSM, 2011.
-
(2011)
ICWSM
-
-
Bollen, J.1
Pepe, A.2
Mao, H.3
-
7
-
-
59749104367
-
From sparse solutions of systems of equations to sparse modeling of signals and images
-
A. Bruckstein, D. Donoho, and M. Elad. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review, 51(1):34-81, 2009.
-
(2009)
SIAM Review
, vol.51
, Issue.1
, pp. 34-81
-
-
Bruckstein, A.1
Donoho, D.2
Elad, M.3
-
9
-
-
82855168069
-
Temporal patterns of happiness and information in a global social network: Hedonometrics and Twitter
-
P. Dodds, K. Harris, I. Kloumann, C. Bliss, and C. Danforth. Temporal patterns of happiness and information in a global social network: hedonometrics and Twitter. PLoS ONE, 6(12):e26752, 2011.
-
(2011)
PLoS ONE
, vol.6
, Issue.12
-
-
Dodds, P.1
Harris, K.2
Kloumann, I.3
Bliss, C.4
Danforth, C.5
-
11
-
-
80053345545
-
Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures
-
S. Golder and M. Macy. Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science, 333(6051):1878-1881, 2011.
-
(2011)
Science
, vol.333
, Issue.6051
, pp. 1878-1881
-
-
Golder, S.1
Macy, M.2
-
13
-
-
83055184650
-
Target-dependent twitter sentiment classification
-
L. Jiang, M. Yu, M. Zhou, X. Liu, and T. Zhao. Target-dependent twitter sentiment classification. In ACL HLT, volume 1, pages 151-160, 2011.
-
(2011)
ACL HLT
, vol.1
, pp. 151-160
-
-
Jiang, L.1
Yu, M.2
Zhou, M.3
Liu, X.4
Zhao, T.5
-
14
-
-
0033886806
-
Text classification from labeled and unlabeled documents using EM
-
K. Nigam, A. K. Mccallum, S. Thrun, and T. Mitchell. Text classification from labeled and unlabeled documents using EM. Machine Learning, 39(2):103-134, 2000.
-
(2000)
Machine Learning
, vol.39
, Issue.2
, pp. 103-134
-
-
Nigam, K.1
Mccallum, A.K.2
Thrun, S.3
Mitchell, T.4
-
15
-
-
85028156346
-
Twitter as a corpus for sentiment analysis and opinion mining
-
A. Pak and P. Paroubek. Twitter as a corpus for sentiment analysis and opinion mining. In LREC, 2010.
-
(2010)
LREC
-
-
Pak, A.1
Paroubek, P.2
-
16
-
-
48449095896
-
Opinion mining and sentiment analysis
-
B. Pang and L. Lee. Opinion mining and sentiment analysis. Found. Trends Inf. Retr., 2(1-2):1-135, 2008.
-
(2008)
Found. Trends Inf. Retr.
, vol.2
, Issue.1-2
, pp. 1-135
-
-
Pang, B.1
Lee, L.2
-
17
-
-
77955994663
-
Classification and clustering via dictionary learning with structured incoherence and shared features
-
I. Ramirez, P. Sprechmann, and G. Sapiro. Classification and clustering via dictionary learning with structured incoherence and shared features. In CVPR, pages 3501-3508, 2010.
-
(2010)
CVPR
, pp. 3501-3508
-
-
Ramirez, I.1
Sprechmann, P.2
Sapiro, G.3
-
18
-
-
71149087699
-
Feature hashing for large scale multitask learning
-
K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature hashing for large scale multitask learning. In ICML, pages 1113-1120, 2009.
-
(2009)
ICML
, pp. 1113-1120
-
-
Weinberger, K.1
Dasgupta, A.2
Langford, J.3
Smola, A.4
Attenberg, J.5
-
19
-
-
33745935185
-
Weighted support vector machine for data classification
-
X. Yang, Q. Song, and A. Cao. Weighted support vector machine for data classification. In IJCNN, volume 2, pages 859-864, 2005.
-
(2005)
IJCNN
, vol.2
, pp. 859-864
-
-
Yang, X.1
Song, Q.2
Cao, A.3
|