-
1
-
-
0036701004
-
Formulation of Euler-Lagrange equations for fractional variational problems
-
Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368-379 (2002)
-
(2002)
J. Math. Anal. Appl.
, vol.272
, pp. 368-379
-
-
Agrawal, O.P.1
-
2
-
-
33746876366
-
Fractional variational calculus and the transversality conditions
-
DOI 10.1088/0305-4470/39/33/008, PII S0305447006218080, 008
-
Agrawal, O.P.: Fractional variational calculus and the transversality conditions. J. Phys. A 39(33), 10375-10384 (2006) (Pubitemid 44183559)
-
(2006)
Journal of Physics A: Mathematical and General
, vol.39
, Issue.33
, pp. 10375-10384
-
-
Agrawal, O.P.1
-
3
-
-
34748879376
-
Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the caputo derivative
-
DOI 10.1177/1077546307077472
-
Agrawal, O.P.: Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative. J. Vib. Control 13(9-10), 1217-1237 (2007) (Pubitemid 47482809)
-
(2007)
JVC/Journal of Vibration and Control
, vol.13
, Issue.9-10
, pp. 1217-1237
-
-
Agrawal, O.P.1
-
4
-
-
34748879376
-
Hamiltonian formulation and a direct numerical scheme for Fractional Optimal Control Problems
-
Agrawal, O.P., Baleanu, D.: Hamiltonian formulation and a direct numerical scheme for Fractional Optimal Control Problems. J. Vib. Control 13, 1217-1237 (2007)
-
(2007)
J. Vib. Control
, vol.13
, pp. 1217-1237
-
-
Agrawal, O.P.1
Baleanu, D.2
-
5
-
-
70349490327
-
Calculus of variations with fractional derivative and fractional integrals
-
Almeida, R., Torres, D.F.M.: Calculus of variations with fractional derivative and fractional integrals. Appl. Math. Lett. 22(12), 1816-1820 (2009)
-
(2009)
Appl. Math. Lett.
, vol.22
, Issue.12
, pp. 1816-1820
-
-
Almeida, R.1
Torres, D.F.M.2
-
6
-
-
77950867099
-
A fractional calculus of variations for multiple integrals with application to vibrating string
-
Almeida, R., Malinowska, A.B., Torres, D.F.M.: A fractional calculus of variations for multiple integrals with application to vibrating string. J. Math. Phys. 51(4), 033503 (2010)
-
(2010)
J. Math. Phys.
, vol.51
, Issue.4
, pp. 033503
-
-
Almeida, R.1
Malinowska, A.B.2
Torres, D.F.M.3
-
7
-
-
77957267794
-
Leitmann's direct method for fractional optimization problems
-
Almeida, R., Torres, D.F.M.: Leitmann's direct method for fractional optimization problems. Appl. Math. Comput. 217, 956-962 (2010)
-
(2010)
Appl. Math. Comput.
, vol.217
, pp. 956-962
-
-
Almeida, R.1
Torres, D.F.M.2
-
8
-
-
77957362548
-
Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives
-
Almeida, R., Torres, D.F.M.: Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16, 1490-1500 (2011)
-
(2011)
Commun. Nonlinear Sci. Numer. Simul.
, vol.16
, pp. 1490-1500
-
-
Almeida, R.1
Torres, D.F.M.2
-
10
-
-
33845669957
-
Fractional Hamilton formalism within Caputo's derivative
-
DOI 10.1007/s10582-006-0406-x
-
Baleanu, D., Agrawal, O.P.: Fractional Hamilton formalism within Caputo's derivative. Czechoslov. J. Phys. 56(10-11), 1087-1092 (2006) (Pubitemid 44951048)
-
(2006)
Czechoslovak Journal of Physics
, vol.56
, Issue.10-11
, pp. 1087-1092
-
-
Baleanu, D.1
Agrawal, O.P.2
-
11
-
-
44649172155
-
On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative
-
Baleanu, D., Muslih, S.I., Rabei, E.M.: On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative. Nonlinear Dyn. 53(1-2), 67-74 (2008)
-
(2008)
Nonlinear Dyn.
, vol.53
, Issue.1-2
, pp. 67-74
-
-
Baleanu, D.1
Muslih, S.I.2
Rabei, E.M.3
-
12
-
-
0141961689
-
A new IIR-Type digital fractional order differentiator
-
Chen, Y.Q., Vinagre, B.M.: A new IIR-Type digital fractional order differentiator. Signal Process. 83(11), 2359-2365 (2003)
-
(2003)
Signal Process.
, vol.83
, Issue.11
, pp. 2359-2365
-
-
Chen, Y.Q.1
Vinagre, B.M.2
-
13
-
-
17844372193
-
Recent applications of fractional calculus to science and engineering
-
DOI 10.1155/S0161171203301486
-
Debnath, L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 54, 3413-3442 (2003) (Pubitemid 40588053)
-
(2003)
International Journal of Mathematics and Mathematical Sciences
, vol.2003
, Issue.54
, pp. 3413-3442
-
-
Debnath, L.1
-
14
-
-
34548580114
-
A fractional approach of nonconservative Lagrangian dynamics
-
El-Nabulsi, R.A.: A fractional approach of nonconservative Lagrangian dynamics. Fizika A 14(4), 289-298 (2005)
-
(2005)
Fizika A
, vol.14
, Issue.4
, pp. 289-298
-
-
El-Nabulsi, R.A.1
-
15
-
-
70350381298
-
Application of fractional calculus in the dynamical analysis and control of mechanical manipulators
-
Fonseca Ferreira, N.M., Duarte, F.B., Lima, M.F.M., Marcos, M.G., Tenreiro, Machado J.A.: Application of fractional calculus in the dynamical analysis and control of mechanical manipulators. Fract. Calc. Appl. Anal. 11(1), 91-113 (2008)
-
(2008)
Fract. Calc. Appl. Anal.
, vol.11
, Issue.1
, pp. 91-113
-
-
Fonseca Ferreira, N.M.1
Duarte, F.B.2
Lima, M.F.M.3
Marcos, M.G.4
Tenreiro Machado, J.A.5
-
16
-
-
46249125645
-
Fractional conservation laws in optimal control theory
-
Frederico, G.S.F., Torres, D.F.M.: Fractional conservation laws in optimal control theory. Nonlinear Dyn. 53(3), 215-222 (2008)
-
(2008)
Nonlinear Dyn.
, vol.53
, Issue.3
, pp. 215-222
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
-
17
-
-
70349224466
-
Fractional-order Euler-Lagrange equations and formulation of Hamiltonian equations
-
Herzallah, M.A.E., Baleanu, D.: Fractional-order Euler-Lagrange equations and formulation of Hamiltonian equations. Nonlinear Dyn. 58, 385-391 (2009)
-
(2009)
Nonlinear Dyn.
, vol.58
, pp. 385-391
-
-
Herzallah, M.A.E.1
Baleanu, D.2
-
18
-
-
79251567943
-
Fractional-order variational calculus with generalized boundary conditions
-
doi:10.1155/2011/357580
-
Herzallah, M.A.E., Baleanu, D.: Fractional-order variational calculus with generalized boundary conditions. Adv. Differ. Equ. (2011). doi:10.1155/2011/357580
-
(2011)
Adv. Differ. Equ.
-
-
Herzallah, M.A.E.1
Baleanu, D.2
-
19
-
-
82255164101
-
Hamilton-Jacobi and fractional like action with time scaling
-
doi:10.1007/s11071-010-9933-x
-
Herzallah, M.A.E., Muslih, S.I., Baleanu, D., Rabei, E.M.: Hamilton-Jacobi and fractional like action with time scaling. Nonlinear Dyn. (2011). doi:10.1007/s11071-010-9933-x
-
(2011)
Nonlinear Dyn.
-
-
Herzallah, M.A.E.1
Muslih, S.I.2
Baleanu, D.3
Rabei, E.M.4
-
21
-
-
52549095901
-
Fractional control of heat diffusion systems
-
Jesus, I.S., Machado, J.A.T.: Fractional control of heat diffusion systems. Nonlinear Dyn. 54(3), 263-282 (2008)
-
(2008)
Nonlinear Dyn.
, vol.54
, Issue.3
, pp. 263-282
-
-
Jesus, I.S.1
Machado, J.A.T.2
-
22
-
-
77956684069
-
-
Elsevier, Amsterdam
-
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematical Studies, vol. 204. Elsevier, Amsterdam (2006)
-
(2006)
Theory and Applications of Fractional Differential Equations. North-Holland Mathematical Studies
, vol.204
-
-
Kilbas, A.A.1
Srivastava, H.M.2
Trujillo, J.J.3
-
23
-
-
0035737230
-
Fractional sequential mechanics - Models with symmetric fractional derivative
-
DOI 10.1023/A:1013378221617
-
Klimek, M.: Fractional sequential mechanics-models with symmetric fractional derivative. Czechoslov. J. Phys. 51, 1348-1354 (2001) (Pubitemid 33576189)
-
(2001)
Czechoslovak Journal of Physics
, vol.51
, Issue.12
, pp. 1348-1354
-
-
Klimek, M.1
-
24
-
-
10844270442
-
Application of fractional calculus to fluid mechanics
-
DOI 10.1115/1.1478062
-
Kulish, V.V., Lage, J.L.: Application of fractional calculus to fluid mechanics. J. Fluids Eng. 124(3), 803-806 (2002) (Pubitemid 40001419)
-
(2002)
Journal of Fluids Engineering, Transactions of the ASME
, vol.124
, Issue.3
, pp. 803-806
-
-
Kulish, V.V.1
Lage, J.L.2
-
25
-
-
15544380308
-
Fractional trigonometry and the spiral functions
-
DOI 10.1007/s11071-004-3745-9
-
Lorenzo, C.F., Hartley, T.T.: Fractional trigonometry and the spiral functions. Nonlinear Dyn. 38(1-4), 23-60 (2004) (Pubitemid 40400606)
-
(2004)
Nonlinear Dynamics
, vol.38
, Issue.1-4
, pp. 23-60
-
-
Lorenzo, C.F.1
Hartley, T.T.2
-
26
-
-
11144305217
-
Fractional calculus in bioengineering. Part 1-3
-
Magin, R.: Fractional calculus in bioengineering. Part 1-3. Crit. Rev. Bioeng. 32 (2004)
-
(2004)
Crit. Rev. Bioeng.
, vol.32
-
-
Magin, R.1
-
28
-
-
14844283120
-
Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives
-
DOI 10.1016/j.jmaa.2004.09.043, PII S0022247X04008005
-
Muslih, S.I., Baleanu, D.: Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives. J. Math. Anal. Appl. 304, 599-606 (2005) (Pubitemid 40350289)
-
(2005)
Journal of Mathematical Analysis and Applications
, vol.304
, Issue.2
, pp. 599-606
-
-
Muslih, S.I.1
Baleanu, D.2
-
29
-
-
21644464298
-
Formulation of Hamiltonian equations for fractional variational problems
-
DOI 10.1007/s10582-005-0067-1
-
Muslih, S., Baleanu, D.: Formulation of Hamiltonian equations for fractional variational problems. Czechoslov. J. Phys. 55(6), 633-642 (2005) (Pubitemid 40937431)
-
(2005)
Czechoslovak Journal of Physics
, vol.55
, Issue.6
, pp. 633-642
-
-
Muslih, S.I.1
Baleanu, D.2
-
30
-
-
77950866104
-
Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative
-
Malinowska, A.B., Torres, D.F.M.: Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative. Comput. Math. Appl. 59, 3110-3116 (2010)
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 3110-3116
-
-
Malinowska, A.B.1
Torres, D.F.M.2
-
31
-
-
82155190579
-
Calculus of variations with fractional and classical derivatives
-
Podlubny, I., Vinagre Jara, B.M., Chen, Y.Q., Feliu Batlle, V., Tejado Balsera, I. (eds.), Badajoz, Spain, October 18-20,. ISBN 9788055304878. Article no. FDA10-076
-
Odzijewicz, T., Torres, D.F.M.: Calculus of variations with fractional and classical derivatives. In: Podlubny, I., Vinagre Jara, B.M., Chen, Y.Q., Feliu Batlle, V., Tejado Balsera, I. (eds.) Proceedings of FDA'10, The 4th IFAC Workshop on Fractional Differentiation and its Applications, Badajoz, Spain, October 18-20, 2010. ISBN 9788055304878. Article no. FDA10-076, 5 pp
-
(2010)
Proceedings of FDA'10, The 4th IFAC Workshop on Fractional Differentiation and its Applications
, pp. 5
-
-
Odzijewicz, T.1
Torres, D.F.M.2
-
32
-
-
34748827947
-
Fractional Euler-Lagrange equations of motion in fractional space
-
DOI 10.1177/1077546307077473
-
Muslih, S.I., Baleanu, D.: Fractional Euler-Lagrange equations of motion in fractional space. J. Vib. Control 13(9-10), 1209-1216 (2007) (Pubitemid 47482808)
-
(2007)
JVC/Journal of Vibration and Control
, vol.13
, Issue.9-10
, pp. 1209-1216
-
-
Muslih, S.I.1
Baleanu, D.2
-
34
-
-
67449115682
-
Fractional WKB approximation
-
Rabei, E.M., Altarazi, I.A., Muslih, S.I., Baleanu, D.: Fractional WKB approximation. Nonlinear Dyn. 57(1-2), 171-175 (2009)
-
(2009)
Nonlinear Dyn.
, vol.57
, Issue.1-2
, pp. 171-175
-
-
Rabei, E.M.1
Altarazi, I.A.2
Muslih, S.I.3
Baleanu, D.4
-
35
-
-
43449130374
-
Hamilton-Jacobi fractional mechanics
-
Rabei, E.M., Ababenh, B.S.: Hamilton-Jacobi fractional mechanics. J. Math. Anal. Appl. 344, 799-805 (2008)
-
(2008)
J. Math. Anal. Appl.
, vol.344
, pp. 799-805
-
-
Rabei, E.M.1
Ababenh, B.S.2
-
36
-
-
33750972567
-
The Hamilton formalism with fractional derivatives
-
DOI 10.1016/j.jmaa.2006.04.076, PII S0022247X06004525
-
Rabei, E.M., Nawafleh, K.I., Hijjawi, R.S., Muslih, S.I., Baleanu, D.: The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 327, 891-897 (2007) (Pubitemid 44742791)
-
(2007)
Journal of Mathematical Analysis and Applications
, vol.327
, Issue.2
, pp. 891-897
-
-
Rabei, E.M.1
Nawafleh, K.I.2
Hijjawi, R.S.3
Muslih, S.I.4
Baleanu, D.5
-
37
-
-
0003598080
-
-
Gordon and Breach, New York
-
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993)
-
(1993)
Fractional Integrals and Derivatives: Theory and Applications.
-
-
Samko, S.G.1
Kilbas, A.A.2
Marichev, O.I.3
|