메뉴 건너뛰기




Volumn 2012, Issue , 2012, Pages

Positive solutions of fractional differential equations with derivative terms

Author keywords

Carath eodory type condition; Equicontinuity; Fixed point theorem; Fractional differential equation; Positive solution

Indexed keywords


EID: 84870913223     PISSN: None     EISSN: 10726691     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (9)

References (23)
  • 4
    • 0028878140 scopus 로고
    • A fractional calculus approach to self similar protein dynamics
    • W. G. Glöckle, T. F. Nonnenmacher; A fractional calculus approach to self similar protein dynamics, Biophys. J. 68 (1995), 46-53.
    • (1995) Biophys. J , vol.68 , pp. 46-53
    • Glöckle, W.G.1    Nonnenmacher, T.F.2
  • 5
    • 0001044887 scopus 로고
    • Relaxation in filled polymers: A fractional calculus approach
    • R. Metzler, W. Schick, H. G. Kilian, T. F. Nonnenmacher; Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys. 103 (1995), 7180-7186
    • (1995) J. Chem. Phys , vol.103 , pp. 7180-7186
    • Metzler, R.1    Schick, W.2    Kilian, H.G.3    Nonnenmacher, T.F.4
  • 6
    • 0037081673 scopus 로고    scopus 로고
    • Analysis of fractional differential equations
    • K. Diethelm, N.J. Ford; Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002), 229-248
    • (2002) J. Math. Anal. Appl , vol.265 , pp. 229-248
    • Diethelm, K.1    Ford, N.J.2
  • 7
    • 41349084761 scopus 로고    scopus 로고
    • Fractional Schrödinger equation
    • N. Laskin; Fractional Schrödinger equation, Physical Review E, 66 (2002), 056108-7
    • (2002) Physical Review E , vol.66 , pp. 056107-056108
    • Laskin, N.1
  • 8
    • 81355150817 scopus 로고    scopus 로고
    • Linking multiple relaxation, power-law attenuation, and fractional wave equations
    • S. P. Näsholm, S. Holm; Linking multiple relaxation, power-law attenuation, and fractional wave equations, J. Acoust. Soc. Amer. 130 (2011), 3038-3045.
    • (2011) J. Acoust. Soc. Amer , vol.130 , pp. 3038-3045
    • Näsholm, S.P.1    Holm, S.2
  • 9
    • 79952143093 scopus 로고    scopus 로고
    • Existence of solutions to fractional order ordinary and delay differential equations and applications
    • S. Abbas; Existence of solutions to fractional order ordinary and delay differential equations and applications, Electron. J. Differential Equations, 2011, No. 9, 1-11
    • (2011) Electron. J. Differential Equations , vol.9 , pp. 1-11
    • Abbas, S.1
  • 10
    • 25144460994 scopus 로고    scopus 로고
    • Positive solutions for boundary value problem of nonlinear fractional differential equation
    • Z. B. Bai, H. Lü; Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311 (2005), 495-505.
    • (2005) J. Math. Anal. Appl , vol.311 , pp. 495-505
    • Bai, Z.B.1    Lü, H.2
  • 11
    • 39849101342 scopus 로고    scopus 로고
    • Solving systems of fractional differential equations using differential transform method
    • V. S. Erturk, S. Momani; Solving systems of fractional differential equations using differential transform method, J. Comput. Appl. Math. 215 (2008), 142-151.
    • (2008) J. Comput. Appl. Math , vol.215 , pp. 142-151
    • Erturk, V.S.1    Momani, S.2
  • 12
    • 1242327688 scopus 로고    scopus 로고
    • Differential equations of fractional order: Methods, results and problems-I
    • A. A. Kilbas, J. J. Trujillo; Differential equations of fractional order: methods, results and problems-I, Appl. Anal. 78 (2001), 153-192.
    • (2001) Appl. Anal , vol.78 , pp. 153-192
    • Kilbas, A.A.1    Trujillo, J.J.2
  • 14
    • 79960993100 scopus 로고    scopus 로고
    • Existence of solutions for a class of fractional boundary value problems via critical point theory
    • F. Jiao, Y. Zhou; Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl. 62 (2011), 1181-1199.
    • (2011) Comput. Math. Appl , vol.62 , pp. 1181-1199
    • Jiao, F.1    Zhou, Y.2
  • 15
    • 84858078460 scopus 로고    scopus 로고
    • Existence theory for an arbitrary order fractional differential equation with deviating argument
    • Y. H. Su, Z. Feng; Existence theory for an arbitrary order fractional differential equation with deviating argument, Acta. Appl. Math. 118 (2012), 81-105.
    • (2012) Acta. Appl. Math , vol.118 , pp. 81-105
    • Su, Y.H.1    Feng, Z.2
  • 16
    • 84863465072 scopus 로고    scopus 로고
    • Method of upper and lower solutions for fractional differential equations
    • L. G. Lin, X. P. Liu, H. Q. Fang; Method of upper and lower solutions for fractional differential equations, Electron. J. Differential Equations, 2012, No. 100, 1-13
    • (2012) Electron. J. Differential Equations , vol.100 , pp. 1-13
    • Lin, L.G.1    Liu, X.P.2    Fang, H.Q.3
  • 17
    • 67651094005 scopus 로고    scopus 로고
    • Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation
    • X. Xu, D. Jiang, C. Yuan; Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation, Nonlinear Anal. 71 (2009), 4676-4688
    • (2009) Nonlinear Anal , vol.71 , pp. 4676-4688
    • Xu, X.1    Jiang, D.2    Yuan, C.3
  • 18
    • 77953688007 scopus 로고    scopus 로고
    • Existence of a positive solution to a class of fractional differential equations
    • C. S. Goodrich; Existence of a positive solution to a class of fractional differential equations, Appl. Math. Lett. 23 (2010), 1050-1055.
    • (2010) Appl. Math. Lett , vol.23 , pp. 1050-1055
    • Goodrich, C.S.1
  • 19
    • 74149089358 scopus 로고    scopus 로고
    • Positive solutions to singular boundary value problem for nonlinear fractional differential equation
    • S. Zhang; Positive solutions to singular boundary value problem for nonlinear fractional differential equation, Comput. Math. Appl. 59 (2010), 1300-1309.
    • (2010) Comput. Math. Appl , vol.59 , pp. 1300-1309
    • Zhang, S.1
  • 22
    • 0000394603 scopus 로고
    • Multiple positive fixed points of nonlinear operators on ordered Banach spaces
    • R. W. Leggett, L. R. Williams; Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J. 28 (1979), 673-688.
    • (1979) Indiana Univ. Math. J , vol.28 , pp. 673-688
    • Leggett, R.W.1    Williams, L.R.2
  • 23
    • 0035426671 scopus 로고    scopus 로고
    • Three positive fixed points of nonlinear operators on ordered Banach spaces
    • R. I. Avery, A. Peterson; Three positive fixed points of nonlinear operators on ordered Banach spaces, Comput. Math. Appl. 42 (2001), 313-422.
    • (2001) Comput. Math. Appl , vol.42 , pp. 313-422
    • Avery, R.I.1    Peterson, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.