-
4
-
-
0028878140
-
A fractional calculus approach to self similar protein dynamics
-
W. G. Glöckle, T. F. Nonnenmacher; A fractional calculus approach to self similar protein dynamics, Biophys. J. 68 (1995), 46-53.
-
(1995)
Biophys. J
, vol.68
, pp. 46-53
-
-
Glöckle, W.G.1
Nonnenmacher, T.F.2
-
5
-
-
0001044887
-
Relaxation in filled polymers: A fractional calculus approach
-
R. Metzler, W. Schick, H. G. Kilian, T. F. Nonnenmacher; Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys. 103 (1995), 7180-7186
-
(1995)
J. Chem. Phys
, vol.103
, pp. 7180-7186
-
-
Metzler, R.1
Schick, W.2
Kilian, H.G.3
Nonnenmacher, T.F.4
-
6
-
-
0037081673
-
Analysis of fractional differential equations
-
K. Diethelm, N.J. Ford; Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002), 229-248
-
(2002)
J. Math. Anal. Appl
, vol.265
, pp. 229-248
-
-
Diethelm, K.1
Ford, N.J.2
-
7
-
-
41349084761
-
Fractional Schrödinger equation
-
N. Laskin; Fractional Schrödinger equation, Physical Review E, 66 (2002), 056108-7
-
(2002)
Physical Review E
, vol.66
, pp. 056107-056108
-
-
Laskin, N.1
-
8
-
-
81355150817
-
Linking multiple relaxation, power-law attenuation, and fractional wave equations
-
S. P. Näsholm, S. Holm; Linking multiple relaxation, power-law attenuation, and fractional wave equations, J. Acoust. Soc. Amer. 130 (2011), 3038-3045.
-
(2011)
J. Acoust. Soc. Amer
, vol.130
, pp. 3038-3045
-
-
Näsholm, S.P.1
Holm, S.2
-
9
-
-
79952143093
-
Existence of solutions to fractional order ordinary and delay differential equations and applications
-
S. Abbas; Existence of solutions to fractional order ordinary and delay differential equations and applications, Electron. J. Differential Equations, 2011, No. 9, 1-11
-
(2011)
Electron. J. Differential Equations
, vol.9
, pp. 1-11
-
-
Abbas, S.1
-
10
-
-
25144460994
-
Positive solutions for boundary value problem of nonlinear fractional differential equation
-
Z. B. Bai, H. Lü; Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311 (2005), 495-505.
-
(2005)
J. Math. Anal. Appl
, vol.311
, pp. 495-505
-
-
Bai, Z.B.1
Lü, H.2
-
11
-
-
39849101342
-
Solving systems of fractional differential equations using differential transform method
-
V. S. Erturk, S. Momani; Solving systems of fractional differential equations using differential transform method, J. Comput. Appl. Math. 215 (2008), 142-151.
-
(2008)
J. Comput. Appl. Math
, vol.215
, pp. 142-151
-
-
Erturk, V.S.1
Momani, S.2
-
12
-
-
1242327688
-
Differential equations of fractional order: Methods, results and problems-I
-
A. A. Kilbas, J. J. Trujillo; Differential equations of fractional order: methods, results and problems-I, Appl. Anal. 78 (2001), 153-192.
-
(2001)
Appl. Anal
, vol.78
, pp. 153-192
-
-
Kilbas, A.A.1
Trujillo, J.J.2
-
14
-
-
79960993100
-
Existence of solutions for a class of fractional boundary value problems via critical point theory
-
F. Jiao, Y. Zhou; Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl. 62 (2011), 1181-1199.
-
(2011)
Comput. Math. Appl
, vol.62
, pp. 1181-1199
-
-
Jiao, F.1
Zhou, Y.2
-
15
-
-
84858078460
-
Existence theory for an arbitrary order fractional differential equation with deviating argument
-
Y. H. Su, Z. Feng; Existence theory for an arbitrary order fractional differential equation with deviating argument, Acta. Appl. Math. 118 (2012), 81-105.
-
(2012)
Acta. Appl. Math
, vol.118
, pp. 81-105
-
-
Su, Y.H.1
Feng, Z.2
-
16
-
-
84863465072
-
Method of upper and lower solutions for fractional differential equations
-
L. G. Lin, X. P. Liu, H. Q. Fang; Method of upper and lower solutions for fractional differential equations, Electron. J. Differential Equations, 2012, No. 100, 1-13
-
(2012)
Electron. J. Differential Equations
, vol.100
, pp. 1-13
-
-
Lin, L.G.1
Liu, X.P.2
Fang, H.Q.3
-
17
-
-
67651094005
-
Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation
-
X. Xu, D. Jiang, C. Yuan; Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation, Nonlinear Anal. 71 (2009), 4676-4688
-
(2009)
Nonlinear Anal
, vol.71
, pp. 4676-4688
-
-
Xu, X.1
Jiang, D.2
Yuan, C.3
-
18
-
-
77953688007
-
Existence of a positive solution to a class of fractional differential equations
-
C. S. Goodrich; Existence of a positive solution to a class of fractional differential equations, Appl. Math. Lett. 23 (2010), 1050-1055.
-
(2010)
Appl. Math. Lett
, vol.23
, pp. 1050-1055
-
-
Goodrich, C.S.1
-
19
-
-
74149089358
-
Positive solutions to singular boundary value problem for nonlinear fractional differential equation
-
S. Zhang; Positive solutions to singular boundary value problem for nonlinear fractional differential equation, Comput. Math. Appl. 59 (2010), 1300-1309.
-
(2010)
Comput. Math. Appl
, vol.59
, pp. 1300-1309
-
-
Zhang, S.1
-
22
-
-
0000394603
-
Multiple positive fixed points of nonlinear operators on ordered Banach spaces
-
R. W. Leggett, L. R. Williams; Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J. 28 (1979), 673-688.
-
(1979)
Indiana Univ. Math. J
, vol.28
, pp. 673-688
-
-
Leggett, R.W.1
Williams, L.R.2
-
23
-
-
0035426671
-
Three positive fixed points of nonlinear operators on ordered Banach spaces
-
R. I. Avery, A. Peterson; Three positive fixed points of nonlinear operators on ordered Banach spaces, Comput. Math. Appl. 42 (2001), 313-422.
-
(2001)
Comput. Math. Appl
, vol.42
, pp. 313-422
-
-
Avery, R.I.1
Peterson, A.2
|