메뉴 건너뛰기




Volumn 2012, Issue , 2012, Pages

Method of upper and lower solutions for fractional differential equations

Author keywords

Boundary value problems; Fractional differential equations; Monotone iterative algorithm; Upper and lower solutions

Indexed keywords


EID: 84863465072     PISSN: None     EISSN: 10726691     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (39)

References (24)
  • 3
    • 0002795136 scopus 로고    scopus 로고
    • in: F. Keil, W. Mackens, H. Voss, J. Werther (Eds), Science Computing in Chemical Engineering-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer-Verlag, Heidelberg
    • K. Diethelm, A. D. Freed; On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, in: F. Keil, W. Mackens, H. Voss, J. Werther (Eds), Science Computing in Chemical Engineering-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer-Verlag, Heidelberg. 1999, pp. 217-224.
    • (1999) On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity , pp. 217-224
    • Diethelm, K.1    Freed, A.D.2
  • 6
    • 17444382726 scopus 로고    scopus 로고
    • Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions
    • A. A. Kilbas, S. A. Marzan; Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differential Equations 41 (2005) 84-89.
    • (2005) Differential Equations , vol.41 , pp. 84-89
    • Kilbas, A.A.1    Marzan, S.A.2
  • 7
    • 33645152919 scopus 로고    scopus 로고
    • Positive solutions for boundary-value problems of nonlinear fractional differential equations
    • S. Zhang; Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron. J. Differential Equations 2006, 36 (2006) 1-12.
    • (2006) Electron. J. Differential Equations 2006 , vol.36 , pp. 1-12
    • Zhang, S.1
  • 8
    • 44649165019 scopus 로고    scopus 로고
    • Subordination and superordination for univalent solutions for fractional differential equations
    • R. W. Ibrahim, M. Darus; Subordination and superordination for univalent solutions for fractional differential equations, J. Math. Anal. Appl. 345 (2008) 871-879.
    • (2008) J. Math. Anal. Appl. , vol.345 , pp. 871-879
    • Ibrahim, R.W.1    Darus, M.2
  • 9
    • 35448979806 scopus 로고    scopus 로고
    • Fractional order adaptive high-gain controllers for a class of linear systems
    • S. Ladaci, J. L. Loiseau, A. Charef; Fractional order adaptive high-gain controllers for a class of linear systems, Commun. Nonlinear Sci. Numer. Simul. 13 (2008) 707-714.
    • (2008) Commun. Nonlinear Sci. Numer. Simul. , vol.13 , pp. 707-714
    • Ladaci, S.1    Loiseau, J.L.2    Charef, A.3
  • 10
    • 77957591180 scopus 로고    scopus 로고
    • Existence and uniqueness of solution for fractioal differential equations with integral boundary value conditions
    • X. Liu, M. Jia, B. Wu; Existence and uniqueness of solution for fractioal differential equations with integral boundary value conditions, Electron. J. Qual. Theory Differ. Equ. No. 69 (2009) 1-10.
    • (2009) Electron. J. Qual. Theory Differ. Equ. No. , vol.69 , pp. 1-10
    • Liu, X.1    Jia, M.2    Wu, B.3
  • 11
    • 79961001222 scopus 로고    scopus 로고
    • Three nonnegative solutions for fractional differential equations with integral boundary conditions
    • M. Jia, X. Liu; Three nonnegative solutions for fractional differential equations with integral boundary conditions, Comput. Math. Appl. 62 (2011) 1405-1412.
    • (2011) Comput. Math. Appl. , vol.62 , pp. 1405-1412
    • Jia, M.1    Liu, X.2
  • 12
    • 77950189007 scopus 로고    scopus 로고
    • Multiple solutions for fractional differential equations with nonlinear boundary conditions
    • X. Liu, M. Jia; Multiple solutions for fractional differential equations with nonlinear boundary conditions, Comput. Math. Appl. 59 (2010) 2880-2886.
    • (2010) Comput. Math. Appl. , vol.59 , pp. 2880-2886
    • Liu, X.1    Jia, M.2
  • 13
    • 38049021511 scopus 로고    scopus 로고
    • On the solution of the fractional nonlinear Schrödinger equation
    • S. Z. Rida, H. M. El-Sherbiny, A. A. M. Arafa; On the solution of the fractional nonlinear Schrödinger equation, Phys. Lett. A 372 (2008) 553-558.
    • (2008) Phys. Lett. A , vol.372 , pp. 553-558
    • Rida, S.Z.1    El-Sherbiny, H.M.2    Arafa, A.A.M.3
  • 15
    • 39749179585 scopus 로고    scopus 로고
    • Existence and uniqueness of solutions of secend-order three-point boundary-value problems with upper and lower solutions in the reverse order
    • F. Li, M. Jia, X. Liu, C. Li, G. Li; Existence and uniqueness of solutions of secend-order three-point boundary-value problems with upper and lower solutions in the reverse order, Nonlinear Anal. 68 (2008) 2381-2388.
    • (2008) Nonlinear Anal. , vol.68 , pp. 2381-2388
    • Li, F.1    Jia, M.2    Liu, X.3    Li, C.4    Li, G.5
  • 16
    • 78650178238 scopus 로고    scopus 로고
    • Monotone iterative method for the second-order three-point boundaryvalue problem with upper and lower solutions in the reversed order
    • F. Li, J. Sun, M. Jia; Monotone iterative method for the second-order three-point boundaryvalue problem with upper and lower solutions in the reversed order, Appl. Math. Compu. 217 (2011) 4840-4847
    • (2011) Appl. Math. Compu. , vol.217 , pp. 4840-4847
    • Li, F.1    Sun, J.2    Jia, M.3
  • 17
    • 84865634974 scopus 로고    scopus 로고
    • A sufficient condition for the existence of a positive solution for a nonlinear fractional differential equation with the Riemann-Liouville derivative
    • (In press) doi:10.1016/j.aml.2012.03.018
    • L. Yang, W. Zhang, X. Liu; A sufficient condition for the existence of a positive solution for a nonlinear fractional differential equation with the Riemann-Liouville derivative, Appl. Math. Lett.(In press) doi:10.1016/j.aml.2012.03.018.
    • Appl. Math. Lett.
    • Yang, L.1    Zhang, W.2    Liu, X.3
  • 18
    • 0141849307 scopus 로고    scopus 로고
    • Remarks on periodic boundary-value problems for functional differential equations
    • Juan J. Nieto, Rosana Rodríguez-López; Remarks on periodic boundary-value problems for functional differential equations, J. Compu. Appl. Math. 158 (2003) 339-353.
    • (2003) J. Compu. Appl. Math. , vol.158 , pp. 339-353
    • Nieto, J.J.1    Rosana, R.-L.2
  • 19
    • 1642519758 scopus 로고    scopus 로고
    • On monotone method for first and second order periodic boundary-value problems and periodic solutions of functional differential equations
    • D. Jiang, J. J. Nieto, W. Zuo; On monotone method for first and second order periodic boundary-value problems and periodic solutions of functional differential equations, J. Math. Anal. Appl. 289 (2004) 691-699.
    • (2004) J. Math. Anal. Appl. , vol.289 , pp. 691-699
    • Jiang, D.1    Nieto, J.J.2    Zuo, W.3
  • 20
    • 27744593054 scopus 로고    scopus 로고
    • Solvability of three point boundary-value problems for second order ordinary differential equations with deviating arguments
    • T. Jankowski; Solvability of three point boundary-value problems for second order ordinary differential equations with deviating arguments, J. Math. Anal. Appl. 312 (2005) 620-636.
    • (2005) J. Math. Anal. Appl. , vol.312 , pp. 620-636
    • Jankowski, T.1
  • 21
    • 0036568079 scopus 로고    scopus 로고
    • Monotone method for singular Neumann problem
    • N. Yazidi; Monotone method for singular Neumann problem, Nonlinear Anal. 49 (2002) 589-602.
    • (2002) Nonlinear Anal. , vol.49 , pp. 589-602
    • Yazidi, N.1
  • 22
    • 67349242752 scopus 로고    scopus 로고
    • Boundary-value problems involving upper and lower solutions in reverse order
    • W. Wang, X. Yang, J. Shen; Boundary-value problems involving upper and lower solutions in reverse order, J. Compu. Appl. Math. 230 (1) (2009) 1-7.
    • (2009) J. Compu. Appl. Math. , vol.230 , Issue.1 , pp. 1-7
    • Wang, W.1    Yang, X.2    Shen, J.3
  • 23
    • 0039459055 scopus 로고
    • Differential equations of non-integer order
    • J. H. Barrett; Differential equations of non-integer order. Canad J. Math., 1954, 6(4): 529-541.
    • (1954) Canad J. Math. , vol.6 , Issue.4 , pp. 529-541
    • Barrett, J.H.1
  • 24
    • 79960998156 scopus 로고    scopus 로고
    • The existence of a solution for a frational differential equation with nonlinear boundary conditions considered using upper and lower solutions in reversed order
    • S. Zhang, X. Su; The existence of a solution for a frational differential equation with nonlinear boundary conditions considered using upper and lower solutions in reversed order, Compu. Math. Appl. 62 (2011) 1269-1274.
    • (2011) Compu. Math. Appl. , vol.62 , pp. 1269-1274
    • Zhang, S.1    Su, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.