메뉴 건너뛰기




Volumn 28, Issue 12, 2012, Pages

Fast Markov chain Monte Carlo sampling for sparse Bayesian inference in high-dimensional inverse problems using L1-type priors

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN FRAMEWORKS; BAYESIAN INFERENCE; BAYESIAN INVERSION; GIBBS SAMPLERS; HIGH-DIMENSIONAL; INTRINSIC FEATURES; MARKOV CHAIN MONTE CARLO; MCMC SAMPLING; PRIOR DISTRIBUTION; REGULARIZATION THEORY; SAMPLING ALGORITHM; SAMPLING SCHEMES; SINGLE COMPONENTS; SPARSE PRIOR; VARIATIONAL REGULARIZATION;

EID: 84870416863     PISSN: 02665611     EISSN: 13616420     Source Type: Journal    
DOI: 10.1088/0266-5611/28/12/125012     Document Type: Article
Times cited : (27)

References (52)
  • 1
    • 77953940632 scopus 로고    scopus 로고
    • National Institute of Standards and Technology
    • Digital Library of Mathematical Functions. National Institute of Standards and Technology from http://dlmf.nist.gov/ 2011
    • (2011) Digital Library of Mathematical Functions
  • 2
    • 77749311485 scopus 로고    scopus 로고
    • Hierarchical regularization for edge-preserving reconstruction of PET images
    • 0266-5611 035010
    • Bardsley J, Calvetti D and Somersalo E 2010 Hierarchical regularization for edge-preserving reconstruction of PET images Inverse Problems 26 035010
    • (2010) Inverse Problems , vol.26 , Issue.3
    • Bardsley, J.1    Calvetti, D.2    Somersalo, E.3
  • 3
    • 41549168778 scopus 로고    scopus 로고
    • Convergence rates of general regularization methods for statistical inverse problems and applications
    • 10.1137/060651884 0036-1429
    • Bissantz N, Hohage T, Munk A and Ruymgaart F 2007 Convergence rates of general regularization methods for statistical inverse problems and applications SIAM J. Numer. Anal. 45 2610-36
    • (2007) SIAM J. Numer. Anal. , vol.45 , Issue.6 , pp. 2610-2636
    • Bissantz, N.1    Hohage, T.2    Munk, A.3    Ruymgaart, F.4
  • 4
    • 0043096621 scopus 로고    scopus 로고
    • Assessing convergence of Markov chain Monte Carlo algorithms
    • 10.1023/A:1008820505350 0960-3174
    • Brooks S and Roberts G 1998 Assessing convergence of Markov chain Monte Carlo algorithms Stat. Comput. 8 319-35
    • (1998) Stat. Comput. , vol.8 , Issue.4 , pp. 319-335
    • Brooks, S.1    Roberts, G.2
  • 6
    • 84870404824 scopus 로고    scopus 로고
    • Burger M and Osher S 2012 A guide to the TV zoo, unpublished
    • (2012)
    • Burger, M.1    Osher, S.2
  • 7
    • 33947368708 scopus 로고    scopus 로고
    • A Gaussian hypermodel to recover blocky objects
    • DOI 10.1088/0266-5611/23/2/016, PII S0266561107367361, 016
    • Calvetti D and Somersalo E 2007 A Gaussian hypermodel to recover blocky objects Inverse Problems. 23 733-54 (Pubitemid 46453832)
    • (2007) Inverse Problems , vol.23 , Issue.2 , pp. 733-754
    • Calvetti, D.1    Somersalo, E.2
  • 8
    • 44449098586 scopus 로고    scopus 로고
    • Hypermodels in the Bayesian imaging framework
    • 0266-5611 034013
    • Calvetti D and Somersalo E 2008 Hypermodels in the Bayesian imaging framework Inverse Problems. 24 034013
    • (2008) Inverse Problems. , vol.24 , Issue.3
    • Calvetti, D.1    Somersalo, E.2
  • 9
    • 78449235493 scopus 로고    scopus 로고
    • A general purpose sampling algorithm for continuous distributions (the t-walk)
    • 10.1214/10-BA60 1936-0975
    • Christen J A and Fox C 2010 A general purpose sampling algorithm for continuous distributions (the t-walk) Bayesian Anal. 5 263-82
    • (2010) Bayesian Anal. , vol.5 , Issue.2 , pp. 263-282
    • Christen, J.A.1    Fox, C.2
  • 11
    • 84870446385 scopus 로고    scopus 로고
    • Comelli S 2011 A novel class of priors for edge-preserving methods in Bayesian inversion Master's Thesis University of Milan, Italy
    • (2011) Master's Thesis
    • Comelli, S.1
  • 12
    • 0030539336 scopus 로고    scopus 로고
    • Markov chain Monte Carlo convergence diagnostics: A comparative review
    • 10.1080/01621459.1996.10476956 0162-1459
    • Cowles M and Carlin B 1996 Markov chain Monte Carlo convergence diagnostics: a comparative review J. Am. Stat. Assoc. 91 883-904
    • (1996) J. Am. Stat. Assoc. , vol.91 , Issue.434 , pp. 883-904
    • Cowles, M.1    Carlin, B.2
  • 13
    • 80055063784 scopus 로고    scopus 로고
    • Bayesian calibration of a large-scale geothermal reservoir model by a new adaptive delayed acceptance Metropolis-Hastings algorithm
    • 10.1029/2010WR010352 0043-1397
    • Cui T, Fox C and O'Sullivan M J 2011 Bayesian calibration of a large-scale geothermal reservoir model by a new adaptive delayed acceptance Metropolis-Hastings algorithm Water Resour. Res. 47 W10521
    • (2011) Water Resour. Res. , vol.47 , Issue.10 , pp. 10521
    • Cui, T.1    Fox, C.2    O'Sullivan, M.J.3
  • 14
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • 10.1109/TIT.2006.871582 0018-9448
    • Donoho D L 2006 Compressed sensing IEEE Trans. Inform. Theory 52 1289-306
    • (2006) IEEE Trans. Inform. Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.L.1
  • 16
    • 33645837850 scopus 로고    scopus 로고
    • On the multivariate Laplace distribution
    • 10.1109/LSP.2006.870353 1070-9908
    • Eltoft T, Kim T and Lee T-W 2006 On the multivariate Laplace distribution IEEE Signal Process Lett. 13 300-3
    • (2006) IEEE Signal Process Lett. , vol.13 , Issue.5 , pp. 300-303
    • Eltoft, T.1    Kim, T.2    Lee, T.-W.3
  • 18
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • 10.1080/01621459.1990.10476213 0162-1459
    • Gelfand A E and Smith A F M 1990 Sampling-based approaches to calculating marginal densities J. Am. Stat. Assoc. 85 398-409
    • (1990) J. Am. Stat. Assoc. , vol.85 , Issue.410 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 19
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models
    • 10.1214/06-BA117A 1931-6690
    • Gelman A 2006 Prior distributions for variance parameters in hierarchical models Bayesian Anal. 1 515-33
    • (2006) Bayesian Anal. , vol.1 , pp. 515-533
    • Gelman, A.1
  • 21
    • 84969334819 scopus 로고    scopus 로고
    • The Split Bregman method for L1-regularized problems
    • 10.1137/080725891 1936-4954
    • Goldstein T and Osher S 2009 The Split Bregman method for L1-regularized problems SIAM J. Imaging Sci. 2 323-43
    • (2009) SIAM J. Imaging Sci. , vol.2 , Issue.2 , pp. 323-343
    • Goldstein, T.1    Osher, S.2
  • 24
    • 33746082065 scopus 로고    scopus 로고
    • Componentwise adaptation for high dimensional MCMC
    • DOI 10.1007/BF02789703
    • Haario H, Saksman E and Tamminen J 2005 Componentwise adaptation for high dimensional MCMC Comput. Stat. 20 265-73 (Pubitemid 44070756)
    • (2005) Computational Statistics , vol.20 , Issue.2 , pp. 265-273
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 25
    • 77956890234 scopus 로고
    • Monte carlo sampling methods using Markov chains and their applications
    • 10.1093/biomet/57.1.97 0006-3444
    • Hastings W K 1970 Monte carlo sampling methods using Markov chains and their applications Biometrika 57 97-109
    • (1970) Biometrika , vol.57 , Issue.1 , pp. 97-109
    • Hastings, W.K.1
  • 26
    • 73649128596 scopus 로고    scopus 로고
    • On infinite-dimensional hierarchical probability models in statistical inverse problems
    • 10.3934/ipi.2009.3.567 1930-8337
    • Helin T 2010 On infinite-dimensional hierarchical probability models in statistical inverse problems Inverse Problems Imaging 3 567-97
    • (2010) Inverse Problems Imaging , vol.3 , Issue.4 , pp. 567-597
    • Helin, T.1
  • 27
    • 84870458825 scopus 로고    scopus 로고
    • Helin T and Lassas M 2009 Hierarchical models in statistical inverse problems and the Mumford-Shah functional Technical Report arXiv:0908.3396
    • (2009) Technical Report
    • Helin, T.1    Lassas, M.2
  • 28
    • 16244389030 scopus 로고    scopus 로고
    • Markov chain Monte Carlo-based approaches for inference in computationally intensive inverse problems
    • Higdon D, Lee H and Holloman C 2003 Markov chain Monte Carlo-based approaches for inference in computationally intensive inverse problems Bayesian Statistics 7, Proc. 7th Valencia Int. Meeting ed J Bernardo (Oxford: Oxford University Press) pp 181-97
    • (2003) Bayesian Statistics 7, Proc. 7th Valencia Int. Meeting , pp. 181-197
    • Higdon, D.1    Lee, H.2    Holloman, C.3    Bernardo, J.4
  • 29
    • 80155183233 scopus 로고    scopus 로고
    • Hofinger A 2006 Ill-posed problems: extending the deterministic theory to a stochastic setup PhD Thesis Universität Linz
    • (2006) PhD Thesis
    • Hofinger, A.1
  • 35
    • 70450218926 scopus 로고    scopus 로고
    • Discretization invariant Bayesian inversion and Besov space priors
    • 10.3934/ipi.2009.3.87 1930-8337
    • Lassas M, Saksman E and Siltanen S 2009 Discretization invariant Bayesian inversion and Besov space priors Inverse Problems Imaging 3 87-122
    • (2009) Inverse Problems Imaging , vol.3 , Issue.1 , pp. 87-122
    • Lassas, M.1    Saksman, E.2    Siltanen, S.3
  • 36
    • 6344231795 scopus 로고    scopus 로고
    • Can one use total variation prior for edge-preserving Bayesian inversion?
    • 10.1088/0266-5611/20/5/013 0266-5611
    • Lassas M and Siltanen S 2004 Can one use total variation prior for edge-preserving Bayesian inversion? Inverse Problems 20 1537-63
    • (2004) Inverse Problems , vol.20 , Issue.5 , pp. 1537-1563
    • Lassas, M.1    Siltanen, S.2
  • 38
    • 84870406173 scopus 로고    scopus 로고
    • Louchet C 2008 Variational and Bayesian models for image denoising: from total variation towards non-local means PhD Thesis Université Paris Descartes
    • (2008) PhD Thesis
    • Louchet, C.1
  • 40
    • 84891435216 scopus 로고    scopus 로고
    • On Metropolis-Hastings algorithms with delayed rejection
    • 0026-1424
    • Mira A 2001 On Metropolis-Hastings algorithms with delayed rejection Metron LIX 231-41
    • (2001) Metron , vol.59 , pp. 231-241
    • Mira, A.1
  • 41
    • 70349315576 scopus 로고    scopus 로고
    • Multilevel approximations in sample-based inversion from the Dirichlet-to-Neumann map
    • 1742-6596 012035
    • Moulton J D, Fox C and Svyatskiy D 2008 Multilevel approximations in sample-based inversion from the Dirichlet-to-Neumann map J. Phys.: Conf. Ser. 124 012035
    • (2008) J. Phys.: Conf. Ser. , vol.124 , Issue.1
    • Moulton, J.D.1    Fox, C.2    Svyatskiy, D.3
  • 42
    • 33746863011 scopus 로고    scopus 로고
    • Optimal scaling for partially updating MCMC algorithms
    • DOI 10.1214/105051605000000791
    • Neal P and Roberts G 2006 Optimal scaling for partially updating MCMC algorithms Ann. Appl. Probab. 16 475-515 (Pubitemid 44196523)
    • (2006) Annals of Applied Probability , vol.16 , Issue.2 , pp. 475-515
    • Neal, P.1    Roberts, G.2
  • 43
    • 0002215719 scopus 로고
    • Neal R M 1995 Suppressing random walks in Markov chain Monte Carlo using ordered overrelaxation Technical report 9508 (Dept. of Statistics, University of Toronto) 22 pp
    • (1995) Technical Report
    • Neal, R.M.1
  • 44
    • 84870437887 scopus 로고    scopus 로고
    • Sampling Gaussian distributions in Krylov spaces with conjugate gradients
    • 10.1137/110831404 1064-8275
    • Parker A and Fox C 2012 Sampling Gaussian distributions in Krylov spaces with conjugate gradients SIAM J. Sci. Comput. 34 3
    • (2012) SIAM J. Sci. Comput. , vol.34 , Issue.3 , pp. 312
    • Parker, A.1    Fox, C.2
  • 45
    • 0013037129 scopus 로고    scopus 로고
    • Optimal Scaling for Various Metropolis-Hastings Algorithms
    • DOI 10.1214/ss/1015346320
    • Roberts G O and Rosenthal J S 2001 Optimal scaling for various Metropolis-Hastings algorithms Stat. Sci. 16 351-67 (Pubitemid 33636356)
    • (2001) Statistical Science , vol.16 , Issue.4 , pp. 351-367
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 47
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • 10.1016/0167-2789(92)90242-F 0167-2789
    • Rudin L I, Osher S and Fatemi E 1992 Nonlinear total variation based noise removal algorithms Physica D 60 259-68
    • (1992) Physica D , vol.60 , Issue.1-4 , pp. 259-268
    • Rudin, L.I.1    Osher, S.2    Fatemi, E.3
  • 50
    • 0019910307 scopus 로고
    • Inverse problems = quest for information
    • 0340-062X
    • Tarantola A and Valette B 1982 Inverse problems = quest for information J. Geophys. 50 159-70
    • (1982) J. Geophys. , vol.50 , pp. 159-170
    • Tarantola, A.1    Valette, B.2
  • 52
    • 80053956257 scopus 로고    scopus 로고
    • Bayesian inference in physics
    • 10.1103/RevModPhys.83.943 0034-6861
    • Toussaint U 2011 Bayesian inference in physics Rev. Mod. Phys. 83 943-99
    • (2011) Rev. Mod. Phys. , vol.83 , Issue.3 , pp. 943-999
    • Toussaint, U.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.