메뉴 건너뛰기




Volumn 2012, Issue , 2012, Pages

Finite element method for linear multiterm fractional differential equations

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84869996254     PISSN: 1110757X     EISSN: 16870042     Source Type: Journal    
DOI: 10.1155/2012/482890     Document Type: Article
Times cited : (6)

References (19)
  • 1
    • 0842329043 scopus 로고    scopus 로고
    • On a system of differential equations with fractional derivatives arising in rod theory
    • DOI 10.1088/0305-4470/37/4/012, PII S0305447004669939
    • Atanackovic T. M., Stankovic B., On a system of differential equations with fractional derivatives arising in rod theory. Journal of Physics A 2004 37 4 1241 1250 10.1088/0305-4470/37/4/012 2043217 ZBL1059.35011 (Pubitemid 38178229)
    • (2004) Journal of Physics A: Mathematical and General , vol.37 , Issue.4 , pp. 1241-1250
    • Atanackovic, T.M.1    Stankovic, B.2
  • 4
    • 11144305217 scopus 로고    scopus 로고
    • Fractional Calculus in Bioengineering-part 1-3
    • Magin R., Fractional Calculus in Bioengineering-part 1-3. Critical Reviews in Bioengineering 2004 32 3-4 195 377
    • (2004) Critical Reviews in Bioengineering , vol.32 , Issue.3-4 , pp. 195-377
    • Magin, R.1
  • 5
    • 25644439033 scopus 로고    scopus 로고
    • Analytical solution of the Bagley Torvik equation by Adomian decomposition method
    • DOI 10.1016/j.amc.2004.09.006, PII S0096300304006125
    • Ray S. S., Bera R. K., Analytical solution of the Bagley Torvik equation by Adomian decomposition method. Applied Mathematics and Computation 2005 168 1 398 410 10.1016/j.amc.2004.09.006 2170841 ZBL1109.65072 (Pubitemid 41383669)
    • (2005) Applied Mathematics and Computation , vol.168 , Issue.1 , pp. 398-410
    • Ray, S.S.1    Bera, R.K.2
  • 6
    • 77953148885 scopus 로고    scopus 로고
    • Stability analysis of vibration systems with fractional-order derivatives
    • Wang Z. H., Hu H. Y., Stability analysis of vibration systems with fractional-order derivatives. Science China Physics 2010 53 2 345 352
    • (2010) Science China Physics , vol.53 , Issue.2 , pp. 345-352
    • Wang, Z.H.1    Hu, H.Y.2
  • 7
    • 27744514614 scopus 로고    scopus 로고
    • Non-perturbative analytical solutions of the space- and time-fractional Burgers equations
    • DOI 10.1016/j.chaos.2005.09.002, PII S096007790500843X
    • Momani S., Non-perturbative analytical solutions of the space- and time-fractional Burgers equations. Chaos, Solitons & Fractals 2006 28 4 930 937 10.1016/j.chaos.2005.09.002 2212780 ZBL1099.35118 (Pubitemid 41607591)
    • (2006) Chaos, Solitons and Fractals , vol.28 , Issue.4 , pp. 930-937
    • Momani, S.1
  • 8
    • 35348869861 scopus 로고    scopus 로고
    • Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order
    • DOI 10.1016/j.chaos.2006.06.041, PII S0960077906005972
    • Odibat Z., Momani S., Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order. Chaos, Solitons & Fractals 2008 36 1 167 174 10.1016/j.chaos.2006.06.041 2372056 ZBL1152.34311 (Pubitemid 47576648)
    • (2008) Chaos, Solitons and Fractals , vol.36 , Issue.1 , pp. 167-174
    • Odibat, Z.1    Momani, S.2
  • 9
    • 34250647432 scopus 로고    scopus 로고
    • An approximation solution of a nonlinear equation with Riemann-Liouville's fractional derivatives by He's variational iteration method
    • DOI 10.1016/j.cam.2006.07.011, PII S0377042706004602, Variational Iteration Method-Reality, Potential, and Challenges
    • Abbasbandy S., An approximation solution of a nonlinear equation with Riemann-Liouville's fractional derivatives by He's variational iteration method. Journal of Computational and Applied Mathematics 2007 207 1 53 58 10.1016/j.cam.2006.07.011 2332946 ZBL1120.65133 (Pubitemid 46935385)
    • (2007) Journal of Computational and Applied Mathematics , vol.207 , Issue.1 , pp. 53-58
    • Abbasbandy, S.1
  • 10
    • 84868613849 scopus 로고    scopus 로고
    • Converting fractional differential equations into partial differentil equations
    • 10.2298/TSCI110503068H
    • He J. H., Li Z. B., Converting fractional differential equations into partial differentil equations. Thermal Science 2012 16 2 331 334 10.2298/TSCI110503068H
    • (2012) Thermal Science , vol.16 , Issue.2 , pp. 331-334
    • He, J.H.1    Li, Z.B.2
  • 11
    • 84860388823 scopus 로고    scopus 로고
    • A short remark on fractional variational iteration method
    • 10.1016/j.physleta.2011.07.033 2826245
    • He J.-H., A short remark on fractional variational iteration method. Physics Letters A 2011 375 38 3362 3364 10.1016/j.physleta.2011.07.033 2826245
    • (2011) Physics Letters A , vol.375 , Issue.38 , pp. 3362-3364
    • He, J.-H.1
  • 12
    • 84855203771 scopus 로고    scopus 로고
    • Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
    • 10.1016/j.physleta.2011.11.030 2877722
    • He J.-H., Elagan S. K., Li Z. B., Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Physics Letters A 2012 376 4 257 259 10.1016/j.physleta.2011.11.030 2877722
    • (2012) Physics Letters A , vol.376 , Issue.4 , pp. 257-259
    • He, J.-H.1    Elagan, S.K.2    Li, Z.B.3
  • 13
    • 84868609962 scopus 로고    scopus 로고
    • Exact solutions of time -fractional heat conduction equation by the fractional comlex transform
    • 10.2298/TSCI110503069L
    • Li Z. B., Exact solutions of time -fractional heat conduction equation by the fractional comlex transform. Thermal Science 2012 16 2 335 338 10.2298/TSCI110503069L
    • (2012) Thermal Science , vol.16 , Issue.2 , pp. 335-338
    • Li, Z.B.1
  • 14
    • 43049083734 scopus 로고    scopus 로고
    • EXP-function method and its application to nonlinear equations
    • DOI 10.1016/j.chaos.2007.01.024, PII S0960077907000513
    • Wu X.-H., He J.-H., EXP-function method and its application to nonlinear equations. Chaos, Solitons and Fractals 2008 38 3 903 910 10.1016/j.chaos.2007. 01.024 2423371 ZBL1153.35384 (Pubitemid 351633038)
    • (2008) Chaos, Solitons and Fractals , vol.38 , Issue.3 , pp. 903-910
    • Wu, X.-H.1    He, J.-H.2
  • 15
    • 4444368867 scopus 로고    scopus 로고
    • Finite difference approximations for fractional advection-dispersion flow equations
    • DOI 10.1016/j.cam.2004.01.033, PII S0377042704000986
    • Meerschaert M. M., Tadjeran C., Finite difference approximations for fractional advection-dispersion flow equations. Journal of Computational and Applied Mathematics 2004 172 1 65 77 10.1016/j.cam.2004.01.033 2091131 ZBL1126.76346 (Pubitemid 39204390)
    • (2004) Journal of Computational and Applied Mathematics , vol.172 , Issue.1 , pp. 65-77
    • Meerschaert, M.M.1    Tadjeran, C.2
  • 16
    • 84858110986 scopus 로고    scopus 로고
    • Wavelet collocation method for solving multiorder fractional differential equations
    • 542401 10.1155/2012/542401 2880825 ZBL1235.42034
    • Heydari M. H., Hooshmandasl M. R., Maalek Ghaini F. M., Mohammadi F., Wavelet collocation method for solving multiorder fractional differential equations. Journal of Applied Mathematics 2012 2012 19 542401 10.1155/2012/542401 2880825 ZBL1235.42034
    • (2012) Journal of Applied Mathematics , vol.2012 , pp. 19
    • Heydari, M.H.1    Hooshmandasl, M.R.2    Maalek Ghaini, F.M.3    Mohammadi, F.4
  • 17
    • 58149490845 scopus 로고    scopus 로고
    • Serties solutions of systems of nonlinear fractional deffiential equations
    • 10.1007/s10440-008-9271-x
    • Bataineh A. S., Alomari A. K., Noorant M. S. M., Hashim I., Nazar R., Serties solutions of systems of nonlinear fractional deffiential equations. Acta Applicandae Mathematicae 2009 105 2 189 198 10.1007/s10440-008-9271-x
    • (2009) Acta Applicandae Mathematicae , vol.105 , Issue.2 , pp. 189-198
    • Bataineh, A.S.1    Alomari, A.K.2    Noorant, M.S.M.3    Hashim, I.4    Nazar, R.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.