-
1
-
-
0842329043
-
On a system of differential equations with fractional derivatives arising in rod theory
-
DOI 10.1088/0305-4470/37/4/012, PII S0305447004669939
-
Atanackovic T. M., Stankovic B., On a system of differential equations with fractional derivatives arising in rod theory. Journal of Physics A 2004 37 4 1241 1250 10.1088/0305-4470/37/4/012 2043217 ZBL1059.35011 (Pubitemid 38178229)
-
(2004)
Journal of Physics A: Mathematical and General
, vol.37
, Issue.4
, pp. 1241-1250
-
-
Atanackovic, T.M.1
Stankovic, B.2
-
4
-
-
11144305217
-
Fractional Calculus in Bioengineering-part 1-3
-
Magin R., Fractional Calculus in Bioengineering-part 1-3. Critical Reviews in Bioengineering 2004 32 3-4 195 377
-
(2004)
Critical Reviews in Bioengineering
, vol.32
, Issue.3-4
, pp. 195-377
-
-
Magin, R.1
-
5
-
-
25644439033
-
Analytical solution of the Bagley Torvik equation by Adomian decomposition method
-
DOI 10.1016/j.amc.2004.09.006, PII S0096300304006125
-
Ray S. S., Bera R. K., Analytical solution of the Bagley Torvik equation by Adomian decomposition method. Applied Mathematics and Computation 2005 168 1 398 410 10.1016/j.amc.2004.09.006 2170841 ZBL1109.65072 (Pubitemid 41383669)
-
(2005)
Applied Mathematics and Computation
, vol.168
, Issue.1
, pp. 398-410
-
-
Ray, S.S.1
Bera, R.K.2
-
6
-
-
77953148885
-
Stability analysis of vibration systems with fractional-order derivatives
-
Wang Z. H., Hu H. Y., Stability analysis of vibration systems with fractional-order derivatives. Science China Physics 2010 53 2 345 352
-
(2010)
Science China Physics
, vol.53
, Issue.2
, pp. 345-352
-
-
Wang, Z.H.1
Hu, H.Y.2
-
7
-
-
27744514614
-
Non-perturbative analytical solutions of the space- and time-fractional Burgers equations
-
DOI 10.1016/j.chaos.2005.09.002, PII S096007790500843X
-
Momani S., Non-perturbative analytical solutions of the space- and time-fractional Burgers equations. Chaos, Solitons & Fractals 2006 28 4 930 937 10.1016/j.chaos.2005.09.002 2212780 ZBL1099.35118 (Pubitemid 41607591)
-
(2006)
Chaos, Solitons and Fractals
, vol.28
, Issue.4
, pp. 930-937
-
-
Momani, S.1
-
8
-
-
35348869861
-
Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order
-
DOI 10.1016/j.chaos.2006.06.041, PII S0960077906005972
-
Odibat Z., Momani S., Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order. Chaos, Solitons & Fractals 2008 36 1 167 174 10.1016/j.chaos.2006.06.041 2372056 ZBL1152.34311 (Pubitemid 47576648)
-
(2008)
Chaos, Solitons and Fractals
, vol.36
, Issue.1
, pp. 167-174
-
-
Odibat, Z.1
Momani, S.2
-
9
-
-
34250647432
-
An approximation solution of a nonlinear equation with Riemann-Liouville's fractional derivatives by He's variational iteration method
-
DOI 10.1016/j.cam.2006.07.011, PII S0377042706004602, Variational Iteration Method-Reality, Potential, and Challenges
-
Abbasbandy S., An approximation solution of a nonlinear equation with Riemann-Liouville's fractional derivatives by He's variational iteration method. Journal of Computational and Applied Mathematics 2007 207 1 53 58 10.1016/j.cam.2006.07.011 2332946 ZBL1120.65133 (Pubitemid 46935385)
-
(2007)
Journal of Computational and Applied Mathematics
, vol.207
, Issue.1
, pp. 53-58
-
-
Abbasbandy, S.1
-
10
-
-
84868613849
-
Converting fractional differential equations into partial differentil equations
-
10.2298/TSCI110503068H
-
He J. H., Li Z. B., Converting fractional differential equations into partial differentil equations. Thermal Science 2012 16 2 331 334 10.2298/TSCI110503068H
-
(2012)
Thermal Science
, vol.16
, Issue.2
, pp. 331-334
-
-
He, J.H.1
Li, Z.B.2
-
11
-
-
84860388823
-
A short remark on fractional variational iteration method
-
10.1016/j.physleta.2011.07.033 2826245
-
He J.-H., A short remark on fractional variational iteration method. Physics Letters A 2011 375 38 3362 3364 10.1016/j.physleta.2011.07.033 2826245
-
(2011)
Physics Letters A
, vol.375
, Issue.38
, pp. 3362-3364
-
-
He, J.-H.1
-
12
-
-
84855203771
-
Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
-
10.1016/j.physleta.2011.11.030 2877722
-
He J.-H., Elagan S. K., Li Z. B., Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Physics Letters A 2012 376 4 257 259 10.1016/j.physleta.2011.11.030 2877722
-
(2012)
Physics Letters A
, vol.376
, Issue.4
, pp. 257-259
-
-
He, J.-H.1
Elagan, S.K.2
Li, Z.B.3
-
13
-
-
84868609962
-
Exact solutions of time -fractional heat conduction equation by the fractional comlex transform
-
10.2298/TSCI110503069L
-
Li Z. B., Exact solutions of time -fractional heat conduction equation by the fractional comlex transform. Thermal Science 2012 16 2 335 338 10.2298/TSCI110503069L
-
(2012)
Thermal Science
, vol.16
, Issue.2
, pp. 335-338
-
-
Li, Z.B.1
-
14
-
-
43049083734
-
EXP-function method and its application to nonlinear equations
-
DOI 10.1016/j.chaos.2007.01.024, PII S0960077907000513
-
Wu X.-H., He J.-H., EXP-function method and its application to nonlinear equations. Chaos, Solitons and Fractals 2008 38 3 903 910 10.1016/j.chaos.2007. 01.024 2423371 ZBL1153.35384 (Pubitemid 351633038)
-
(2008)
Chaos, Solitons and Fractals
, vol.38
, Issue.3
, pp. 903-910
-
-
Wu, X.-H.1
He, J.-H.2
-
15
-
-
4444368867
-
Finite difference approximations for fractional advection-dispersion flow equations
-
DOI 10.1016/j.cam.2004.01.033, PII S0377042704000986
-
Meerschaert M. M., Tadjeran C., Finite difference approximations for fractional advection-dispersion flow equations. Journal of Computational and Applied Mathematics 2004 172 1 65 77 10.1016/j.cam.2004.01.033 2091131 ZBL1126.76346 (Pubitemid 39204390)
-
(2004)
Journal of Computational and Applied Mathematics
, vol.172
, Issue.1
, pp. 65-77
-
-
Meerschaert, M.M.1
Tadjeran, C.2
-
16
-
-
84858110986
-
Wavelet collocation method for solving multiorder fractional differential equations
-
542401 10.1155/2012/542401 2880825 ZBL1235.42034
-
Heydari M. H., Hooshmandasl M. R., Maalek Ghaini F. M., Mohammadi F., Wavelet collocation method for solving multiorder fractional differential equations. Journal of Applied Mathematics 2012 2012 19 542401 10.1155/2012/542401 2880825 ZBL1235.42034
-
(2012)
Journal of Applied Mathematics
, vol.2012
, pp. 19
-
-
Heydari, M.H.1
Hooshmandasl, M.R.2
Maalek Ghaini, F.M.3
Mohammadi, F.4
-
17
-
-
58149490845
-
Serties solutions of systems of nonlinear fractional deffiential equations
-
10.1007/s10440-008-9271-x
-
Bataineh A. S., Alomari A. K., Noorant M. S. M., Hashim I., Nazar R., Serties solutions of systems of nonlinear fractional deffiential equations. Acta Applicandae Mathematicae 2009 105 2 189 198 10.1007/s10440-008-9271-x
-
(2009)
Acta Applicandae Mathematicae
, vol.105
, Issue.2
, pp. 189-198
-
-
Bataineh, A.S.1
Alomari, A.K.2
Noorant, M.S.M.3
Hashim, I.4
Nazar, R.5
|