-
1
-
-
0021439912
-
On the appearance of the fractional derivative in the behavior of real materials
-
Bagley R L, Torvik P J. On the appearance of the fractional derivative in the behavior of real materials. J Appl Mech, 1984, 51:294-298
-
(1984)
J. Appl. Mech.
, vol.51
, pp. 294-298
-
-
Bagley, R.L.1
Torvik, P.J.2
-
2
-
-
0020751558
-
Fractional calculus-A different approach to the analysis of viscoe1astically damped structures
-
Bagley R L, Torvik P J. Fractional calculus-A different approach to the analysis of viscoe1astically damped structures. AIAA J, 1983, 21:741-748
-
(1983)
Aiaa J.
, vol.21
, pp. 741-748
-
-
Bagley, R.L.1
Torvik, P.J.2
-
3
-
-
0020765202
-
A theoretical basis for the application of fractional calculus to viscoelasticity
-
Bagley R L, Torvik P J. A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol. 1983, 27:201-220
-
(1983)
J. Rheol
, vol.27
, pp. 201-220
-
-
Bagley, R.L.1
Torvik, P.J.2
-
4
-
-
0022076968
-
Fractional calculus in the transient analysis of viscoelastically damped structures
-
Bagley R L, Torvik P J. Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J, 1985, 23:918-925
-
(1985)
Aiaa J.
, vol.23
, pp. 918-925
-
-
Bagley, R.L.1
Torvik, P.J.2
-
5
-
-
0024748763
-
Power law and fractional calculus model of viscoelas-ticity
-
Bagley R L. Power law and fractional calculus model of viscoelas-ticity. AIAA J, 1989, 27:1412-1417
-
(1989)
Aiaa J.
, vol.27
, pp. 1412-1417
-
-
Bagley, R.L.1
-
6
-
-
0036775857
-
Application of dynamic fractional differentiation to the study of oscillating viscoelastic medium with cylindrical cavity
-
Ingman D, Suzdalnitsky J. Application of dynamic fractional differentiation to the study of oscillating viscoelastic medium with cylindrical cavity. J Vib Acoust, 2002, 124:642-645
-
(2002)
J. Vib Acoust
, vol.124
, pp. 642-645
-
-
Ingman, D.1
Suzdalnitsky, J.2
-
7
-
-
15744376961
-
Fractional calculus description of non-linear viscoelastic behavior of polymers
-
Heymans N. Fractional calculus description of non-linear viscoelastic behavior of polymers. Nonlinear Dyn, 2004, 38:221-231
-
(2004)
Nonlinear Dyn
, vol.38
, pp. 221-231
-
-
Heymans, N.1
-
8
-
-
15544363375
-
Nonlinear fractional order viscoelasticity at large strains
-
Adolfsson K. Nonlinear fractional order viscoelasticity at large strains. Nonlinear Dyn, 2004, 38:233-246
-
(2004)
Nonlinear Dyn
, vol.38
, pp. 233-246
-
-
Adolfsson, K.1
-
9
-
-
34347273767
-
Toward an equation of state for solid materials with memory by use of the half-order derivative
-
Koeller R C. Toward an equation of state for solid materials with memory by use of the half-order derivative. Acta Mech, 2007, 191:125-131
-
(2007)
Acta Mech.
, vol.191
, pp. 125-131
-
-
Koeller, R.C.1
-
10
-
-
33751418151
-
Analysis of the flow of non-Newtonian vis-coelastic fluids in fractal reservoir with the fractional derivative
-
Tong D K, Wang R H. Analysis of the flow of non-Newtonian vis-coelastic fluids in fractal reservoir with the fractional derivative. Sci China Ser G-Phys Mech Astron, 2004, 47:421-441
-
(2004)
Sci. China Ser G-Phys Mech. Astron
, vol.47
, pp. 421-441
-
-
Tong, D.K.1
Wang, R.H.2
-
11
-
-
33644649045
-
Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe
-
Tong D K, Wang R H, Yang H S. Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe. Sci China Ser G-Phys Mech Astron, 2005, 48:485-495
-
(2005)
Sci. China Ser G-Phys Mech. Astron
, vol.48
, pp. 485-495
-
-
Tong, D.K.1
Wang, R.H.2
Yang, H.S.3
-
12
-
-
33745759950
-
Intermediate processes and critical phenomena: Theory, method and progress of fractional operators and their applications to modern mechanics
-
Xu M Y, Tan W C. Intermediate processes and critical phenomena: Theory, method and progress of fractional operators and their applications to modern mechanics. Sci China Ser G-Phys Mech Astron, 2006, 49:257-272
-
(2006)
Sci. China Ser G-Phys Mech. Astron
, vol.49
, pp. 257-272
-
-
Xu, M.Y.1
Tan, W.C.2
-
16
-
-
15544379983
-
λ controllers: Some tuning rules for robustness to plant uncertainties
-
λ controllers: Some tuning rules for robustness to plant uncertainties. Nonlinear Dyn, 2004, 38:369-381
-
(2004)
Nonlinear Dyn
, vol.38
, pp. 369-381
-
-
Monje, C.A.1
Calderon, A.J.2
Vinagre, B.M.3
-
17
-
-
0036648507
-
A suggestion of fractional-order controller for flexible spacecraft attitude control
-
Manabe S. A suggestion of fractional-order controller for flexible spacecraft attitude control. Nonlinear Dyn, 2004, 29:251-268
-
(2004)
Nonlinear Dyn
, vol.29
, pp. 251-268
-
-
Manabe, S.1
-
18
-
-
27744589296
-
α fractional control of robotic time-delay systems
-
α fractional control of robotic time-delay systems. Mech Res Commun, 2006, 33:269-279
-
(2006)
Mech. Res. Commun.
, vol.33
, pp. 269-279
-
-
Lazarevic, M.P.1
-
19
-
-
34047208278
-
Fractional order PID control of a DC-motor with elastic shaft: A case study
-
doi: 10.1109/ACC.2006.1657207
-
Xue D, Zhao C, Chen Y. Fractional order PID control of a DC-motor with elastic shaft: A case study. American Control Conference, 2006, doi: 10.1109/ACC.2006.1657207
-
(2006)
American Control Conference
-
-
Xue, D.1
Zhao, C.2
Chen, Y.3
-
20
-
-
50249160710
-
Turning of fractional PID controllers by using QFT
-
doi: 10.1109/IECON.2006. 348131
-
Cervera J, Banos A, Monje C A, et al. Turning of fractional PID controllers by using QFT. IEEE, 2006, doi: 10.1109/IECON.2006. 348131
-
(2006)
Ieee
-
-
Cervera, J.1
Banos, A.2
Monje, C.A.3
-
21
-
-
67849109649
-
The optim al form of the fractional-order difference feedbacks in enhancing the stability of a SDOF vibration system
-
Wang Z H, Zheng Y G. The optim al form of the fractional-order difference feedbacks in enhancing the stability of a SDOF vibration system. J Sound Vib, 2009, 326:476-488
-
(2009)
J. Sound Vib
, vol.326
, pp. 476-488
-
-
Wang, Z.H.1
Zheng, Y.G.2
-
22
-
-
65549098895
-
On the stability of linear systems with fractional-order elements
-
Radwan A G, Soliman A M, Elwakli A S, et al. On the stability of linear systems with fractional-order elements. Chaos Solitons Fractals, 2009, 40:2317-2328
-
(2009)
Chaos Solitons Fractals
, vol.40
, pp. 2317-2328
-
-
Radwan, A.G.1
Soliman, A.M.2
Elwakli, A.S.3
-
23
-
-
57649105528
-
A note on the stability of fractional order systems
-
Mohammad S T, Mohammad H. A note on the stability of fractional order systems. Math Comput Simul, 2009, 79:1566-1576
-
(2009)
Math. Comput Simul
, vol.79
, pp. 1566-1576
-
-
Mohammad, S.T.1
Mohammad, H.2
-
24
-
-
57549092045
-
An efficient numerical algorithm for stability testing of fractional-delay systems
-
Farshad M B, Masoud K G. An efficient numerical algorithm for stability testing of fractional-delay systems. ISA Trans, 2009, 48:32-37
-
(2009)
Isa Trans
, vol.48
, pp. 32-37
-
-
Farshad, M.B.1
Masoud, K.G.2
-
25
-
-
33645135087
-
A numerical algorithm for stability testing of fractional delay systems
-
Hwang C, Cheng Y C. A numerical algorithm for stability testing of fractional delay systems. Automatica, 2006, 42:825-831
-
(2006)
Automatica
, vol.42
, pp. 825-831
-
-
Hwang, C.1
Cheng, Y.C.2
-
26
-
-
14344261805
-
Stability conditions and criteria for fractional order linear time-invariant systems (in Chinese)
-
Wang Z B, Cao G Y, Zhu X J. Stability conditions and criteria for fractional order linear time-invariant systems (in Chinese). Control Theory Appl, 2004, 21:922-926
-
(2004)
Control Theory Appl.
, vol.21
, pp. 922-926
-
-
Wang, Z.B.1
Cao, G.Y.2
Zhu, X.J.3
-
27
-
-
33745872964
-
Robust stability check of fractional order linear time invariant systems with interval uncertainties
-
Chen Y Q, Ahn H S, Podlubny I. Robust stability check of fractional order linear time invariant systems with interval uncertainties. Signal Process, 2006, 86:2611-2618
-
(2006)
Signal Process
, vol.86
, pp. 2611-2618
-
-
Chen, Y.Q.1
Ahn, H.S.2
Podlubny, I.3
-
28
-
-
47049097664
-
Linear differential equations of fractional orders
-
Sabatier J, Agrawal O P, Tenreiro Machado J A, eds, Dordrecht: Springer
-
Bonilla B, Rivero M, Trujillo J J. Linear differential equations of fractional orders. In: Sabatier J, Agrawal O P, Tenreiro Machado J A, eds. Advances in Fractional Calculus. Dordrecht: Springer, 2007. 77-91
-
(2007)
Advances in Fractional Calculus
, pp. 77-91
-
-
Bonilla, B.1
Rivero, M.2
Trujillo, J.J.3
-
29
-
-
77952240836
-
Linear fractionally da mped oscillator
-
Doi: 10.1155/2010/197020
-
Naber M. Linear fractionally da mped oscillator. Int J Differ Equ, 2010, Doi: 10.1155/2010/197020
-
(2010)
Int. J. Differ Equ
-
-
Naber, M.1
|