메뉴 건너뛰기




Volumn 45, Issue 6, 2012, Pages 1108-1119

Continuous time Bayesian network classifiers

Author keywords

Bayesian classifiers; Continuous time; Multivariate trajectory

Indexed keywords

BAYESIAN CLASSIFIER; BAYESIAN NETWORK CLASSIFIERS; CLASSIFICATION ACCURACY; CONTINUOUS TIME; DISCRETE ATTRIBUTES; EXACT INFERENCE; MOTOR REHABILITATION; NAIVE BAYES CLASSIFIERS; NEUROLOGICAL PATIENT; REAL-TIME FEEDBACK; SUPERVISED CLASSIFICATION; TREE AUGMENTED NAIVE BAYES CLASSIFIERS;

EID: 84869883404     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2012.07.002     Document Type: Article
Times cited : (33)

References (33)
  • 1
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 1989, 77(2):257-286.
    • (1989) Proc IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 2
    • 84990553353 scopus 로고
    • A model for reasoning about persistence and causation
    • Dean T., Kanazawa K. A model for reasoning about persistence and causation. Comput Intell 1989, 5(2):142-150.
    • (1989) Comput Intell , vol.5 , Issue.2 , pp. 142-150
    • Dean, T.1    Kanazawa, K.2
  • 5
    • 0032681772 scopus 로고    scopus 로고
    • Time-series classification using mixed-state dynamic Bayesian networks
    • Pavlovic V., Frey B.J., Huang T.S. Time-series classification using mixed-state dynamic Bayesian networks. Comput Vis Pattern Recognit 1999, 2:2609.
    • (1999) Comput Vis Pattern Recognit , vol.2 , pp. 2609
    • Pavlovic, V.1    Frey, B.J.2    Huang, T.S.3
  • 6
    • 0034868606 scopus 로고    scopus 로고
    • Hidden Markov models for online classification of single trial eeg data
    • Obermaier B., Guger C., Neuper C., Pfurtscheller G. Hidden Markov models for online classification of single trial eeg data. Pattern Recognit Lett 2001, 22(12):1299-1309.
    • (2001) Pattern Recognit Lett , vol.22 , Issue.12 , pp. 1299-1309
    • Obermaier, B.1    Guger, C.2    Neuper, C.3    Pfurtscheller, G.4
  • 7
    • 8344282755 scopus 로고    scopus 로고
    • Classification of aerial missions using hidden Markov models
    • Springer, Berlin/Heidelberg, T. Nielsen, N. Zhang (Eds.) Symbolic and quantitative approaches to reasoning with uncertainty
    • Andersson M. Classification of aerial missions using hidden Markov models. Lecture notes in computer science 2003, 125-136. Springer, Berlin/Heidelberg. T. Nielsen, N. Zhang (Eds.).
    • (2003) Lecture notes in computer science , pp. 125-136
    • Andersson, M.1
  • 8
    • 5044225289 scopus 로고    scopus 로고
    • Facial event classification with task oriented dynamic Bayesian network
    • Gu H., Ji Q. Facial event classification with task oriented dynamic Bayesian network. Comput Vis Pattern Recognit 2004, 2:870-875.
    • (2004) Comput Vis Pattern Recognit , vol.2 , pp. 870-875
    • Gu, H.1    Ji, Q.2
  • 9
    • 38049101107 scopus 로고    scopus 로고
    • Dynamic Bayesian networks for real-time classification of seismic signals
    • Springer, Berlin/Heidelberg, J. Kok, J. Koronacki, R. Lopez de Mantaras, S. Matwin, D. Mladenic, A. Skowron (Eds.) Knowledge discovery in databases: PKDD 2007
    • Riggelsen C., Ohrnberger M., Scherbaum F. Dynamic Bayesian networks for real-time classification of seismic signals. Lecture notes in computer science 2007, vol. 4702:565-572. Springer, Berlin/Heidelberg. J. Kok, J. Koronacki, R. Lopez de Mantaras, S. Matwin, D. Mladenic, A. Skowron (Eds.).
    • (2007) Lecture notes in computer science , vol.4702 , pp. 565-572
    • Riggelsen, C.1    Ohrnberger, M.2    Scherbaum, F.3
  • 10
    • 55849105887 scopus 로고    scopus 로고
    • Learning dynamic naive Bayesian classifiers
    • Marti{dotless}́nez M, Sucar LE. Learning dynamic naive Bayesian classifiers. In: FLAIRS conference; 2008. p. 655-9.
    • (2008) FLAIRS conference , pp. 655-9
    • Martínez, M.1    Sucar, L.E.2
  • 12
    • 84869866015 scopus 로고    scopus 로고
    • Temporal Bayesian classifiers for modelling muscular dystrophy expression data
    • Tucker A., Hoen P.A.C., Vinciotti V., Liu X. Temporal Bayesian classifiers for modelling muscular dystrophy expression data. Intell Data Anal 2006, 10(5):441-455.
    • (2006) Intell Data Anal , vol.10 , Issue.5 , pp. 441-455
    • Tucker, A.1    Hoen, P.A.C.2    Vinciotti, V.3    Liu, X.4
  • 13
    • 19344369418 scopus 로고    scopus 로고
    • A spatio-temporal Bayesian network classifier for understanding visual field deterioration
    • Tucker A., Vinciotti V., Liu X., Garway-Heath D. A spatio-temporal Bayesian network classifier for understanding visual field deterioration. Artif Intell Med 2005, 34(2):163-177.
    • (2005) Artif Intell Med , vol.34 , Issue.2 , pp. 163-177
    • Tucker, A.1    Vinciotti, V.2    Liu, X.3    Garway-Heath, D.4
  • 19
    • 60449118655 scopus 로고    scopus 로고
    • Matching incomplete time series with dynamic time warping: an algorithm and an application to post-stroke rehabilitation
    • Tormene P., Giorgino T., Quaglini S., Stefanelli M. Matching incomplete time series with dynamic time warping: an algorithm and an application to post-stroke rehabilitation. Artif Intell Med 2009, 45(1):11-34.
    • (2009) Artif Intell Med , vol.45 , Issue.1 , pp. 11-34
    • Tormene, P.1    Giorgino, T.2    Quaglini, S.3    Stefanelli, M.4
  • 21
    • 78651414408 scopus 로고    scopus 로고
    • Continuous time Bayesian networks for inferring users presence and activities with extensions for modeling and evaluation.
    • Nodelman U, Horvitz E. Continuous time Bayesian networks for inferring users presence and activities with extensions for modeling and evaluation. Tech. Rep.; 2003.
    • (2003) Tech. Rep
    • Nodelman, U.1    Horvitz, E.2
  • 22
    • 33644900957 scopus 로고    scopus 로고
    • A continuous-time Bayesian network reliability modeling, and analysis framework
    • Boudali H., Dugan J.B. A continuous-time Bayesian network reliability modeling, and analysis framework. IEEE Trans Reliab 2006, 55(1):86-97.
    • (2006) IEEE Trans Reliab , vol.55 , Issue.1 , pp. 86-97
    • Boudali, H.1    Dugan, J.B.2
  • 23
    • 56049105453 scopus 로고    scopus 로고
    • Continuous time Bayesian networks for host level network intrusion detection
    • Xu J, Shelton CR. Continuous time Bayesian networks for host level network intrusion detection. In: ECML/PKDD (2); 2008. p. 613-27.
    • (2008) ECML/PKDD , vol.2 , pp. 613-27
    • Xu, J.1    Shelton, C.R.2
  • 25
    • 84872091823 scopus 로고    scopus 로고
    • A continuous time Bayesian network model for cardiogenic heart failure
    • Gatti E., Luciani D., Stella F. A continuous time Bayesian network model for cardiogenic heart failure. Flex Serv Manufact J 2011, 1-20.
    • (2011) Flex Serv Manufact J , pp. 1-20
    • Gatti, E.1    Luciani, D.2    Stella, F.3
  • 28
    • 77956930777 scopus 로고    scopus 로고
    • Importance sampling for continuous time Bayesian networks
    • Fan Y., Xu J., Shelton C.R. Importance sampling for continuous time Bayesian networks. J Mach Learn Res 2010, 11:2115-2140.
    • (2010) J Mach Learn Res , vol.11 , pp. 2115-2140
    • Fan, Y.1    Xu, J.2    Shelton, C.R.3
  • 30
    • 77958587560 scopus 로고    scopus 로고
    • Expectation maximization and complex duration distributions for continuous time Bayesian networks
    • Nodelman U, Shelton C, Koller D. Expectation maximization and complex duration distributions for continuous time Bayesian networks. In: Uncertainty in artificial intelligence; 2005b. p. 421-30.
    • (2005) Uncertainty in artificial intelligence , pp. 421-30
    • Nodelman, U.1    Shelton, C.2    Koller, D.3
  • 32
    • 37249089420 scopus 로고    scopus 로고
    • Predictive data mining in clinical medicine: current issues and guidelines
    • Bellazzi R., Zupan B. Predictive data mining in clinical medicine: current issues and guidelines. I J Med Inform 2008, 77(2):81-97.
    • (2008) I J Med Inform , vol.77 , Issue.2 , pp. 81-97
    • Bellazzi, R.1    Zupan, B.2
  • 33
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 2006, 7:1-30.
    • (2006) J Mach Learn Res , vol.7 , pp. 1-30
    • Demsar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.