-
1
-
-
0024610919
-
A tutorial on hidden Markov models and selected applications in speech recognition
-
Rabiner L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 1989, 77(2):257-286.
-
(1989)
Proc IEEE
, vol.77
, Issue.2
, pp. 257-286
-
-
Rabiner, L.R.1
-
2
-
-
84990553353
-
A model for reasoning about persistence and causation
-
Dean T., Kanazawa K. A model for reasoning about persistence and causation. Comput Intell 1989, 5(2):142-150.
-
(1989)
Comput Intell
, vol.5
, Issue.2
, pp. 142-150
-
-
Dean, T.1
Kanazawa, K.2
-
5
-
-
0032681772
-
Time-series classification using mixed-state dynamic Bayesian networks
-
Pavlovic V., Frey B.J., Huang T.S. Time-series classification using mixed-state dynamic Bayesian networks. Comput Vis Pattern Recognit 1999, 2:2609.
-
(1999)
Comput Vis Pattern Recognit
, vol.2
, pp. 2609
-
-
Pavlovic, V.1
Frey, B.J.2
Huang, T.S.3
-
6
-
-
0034868606
-
Hidden Markov models for online classification of single trial eeg data
-
Obermaier B., Guger C., Neuper C., Pfurtscheller G. Hidden Markov models for online classification of single trial eeg data. Pattern Recognit Lett 2001, 22(12):1299-1309.
-
(2001)
Pattern Recognit Lett
, vol.22
, Issue.12
, pp. 1299-1309
-
-
Obermaier, B.1
Guger, C.2
Neuper, C.3
Pfurtscheller, G.4
-
7
-
-
8344282755
-
Classification of aerial missions using hidden Markov models
-
Springer, Berlin/Heidelberg, T. Nielsen, N. Zhang (Eds.) Symbolic and quantitative approaches to reasoning with uncertainty
-
Andersson M. Classification of aerial missions using hidden Markov models. Lecture notes in computer science 2003, 125-136. Springer, Berlin/Heidelberg. T. Nielsen, N. Zhang (Eds.).
-
(2003)
Lecture notes in computer science
, pp. 125-136
-
-
Andersson, M.1
-
8
-
-
5044225289
-
Facial event classification with task oriented dynamic Bayesian network
-
Gu H., Ji Q. Facial event classification with task oriented dynamic Bayesian network. Comput Vis Pattern Recognit 2004, 2:870-875.
-
(2004)
Comput Vis Pattern Recognit
, vol.2
, pp. 870-875
-
-
Gu, H.1
Ji, Q.2
-
9
-
-
38049101107
-
Dynamic Bayesian networks for real-time classification of seismic signals
-
Springer, Berlin/Heidelberg, J. Kok, J. Koronacki, R. Lopez de Mantaras, S. Matwin, D. Mladenic, A. Skowron (Eds.) Knowledge discovery in databases: PKDD 2007
-
Riggelsen C., Ohrnberger M., Scherbaum F. Dynamic Bayesian networks for real-time classification of seismic signals. Lecture notes in computer science 2007, vol. 4702:565-572. Springer, Berlin/Heidelberg. J. Kok, J. Koronacki, R. Lopez de Mantaras, S. Matwin, D. Mladenic, A. Skowron (Eds.).
-
(2007)
Lecture notes in computer science
, vol.4702
, pp. 565-572
-
-
Riggelsen, C.1
Ohrnberger, M.2
Scherbaum, F.3
-
10
-
-
55849105887
-
Learning dynamic naive Bayesian classifiers
-
Marti{dotless}́nez M, Sucar LE. Learning dynamic naive Bayesian classifiers. In: FLAIRS conference; 2008. p. 655-9.
-
(2008)
FLAIRS conference
, pp. 655-9
-
-
Martínez, M.1
Sucar, L.E.2
-
12
-
-
84869866015
-
Temporal Bayesian classifiers for modelling muscular dystrophy expression data
-
Tucker A., Hoen P.A.C., Vinciotti V., Liu X. Temporal Bayesian classifiers for modelling muscular dystrophy expression data. Intell Data Anal 2006, 10(5):441-455.
-
(2006)
Intell Data Anal
, vol.10
, Issue.5
, pp. 441-455
-
-
Tucker, A.1
Hoen, P.A.C.2
Vinciotti, V.3
Liu, X.4
-
13
-
-
19344369418
-
A spatio-temporal Bayesian network classifier for understanding visual field deterioration
-
Tucker A., Vinciotti V., Liu X., Garway-Heath D. A spatio-temporal Bayesian network classifier for understanding visual field deterioration. Artif Intell Med 2005, 34(2):163-177.
-
(2005)
Artif Intell Med
, vol.34
, Issue.2
, pp. 163-177
-
-
Tucker, A.1
Vinciotti, V.2
Liu, X.3
Garway-Heath, D.4
-
14
-
-
33750630874
-
-
Elsevier Science Inc., New York, NY, USA
-
Fisher M., Gabbay D., Vila L. Handbook of temporal reasoning in artificial intelligence (foundations of artificial intelligence) 2005, Elsevier Science Inc., New York, NY, USA.
-
(2005)
Handbook of temporal reasoning in artificial intelligence (foundations of artificial intelligence)
-
-
Fisher, M.1
Gabbay, D.2
Vila, L.3
-
19
-
-
60449118655
-
Matching incomplete time series with dynamic time warping: an algorithm and an application to post-stroke rehabilitation
-
Tormene P., Giorgino T., Quaglini S., Stefanelli M. Matching incomplete time series with dynamic time warping: an algorithm and an application to post-stroke rehabilitation. Artif Intell Med 2009, 45(1):11-34.
-
(2009)
Artif Intell Med
, vol.45
, Issue.1
, pp. 11-34
-
-
Tormene, P.1
Giorgino, T.2
Quaglini, S.3
Stefanelli, M.4
-
21
-
-
78651414408
-
Continuous time Bayesian networks for inferring users presence and activities with extensions for modeling and evaluation.
-
Nodelman U, Horvitz E. Continuous time Bayesian networks for inferring users presence and activities with extensions for modeling and evaluation. Tech. Rep.; 2003.
-
(2003)
Tech. Rep
-
-
Nodelman, U.1
Horvitz, E.2
-
22
-
-
33644900957
-
A continuous-time Bayesian network reliability modeling, and analysis framework
-
Boudali H., Dugan J.B. A continuous-time Bayesian network reliability modeling, and analysis framework. IEEE Trans Reliab 2006, 55(1):86-97.
-
(2006)
IEEE Trans Reliab
, vol.55
, Issue.1
, pp. 86-97
-
-
Boudali, H.1
Dugan, J.B.2
-
23
-
-
56049105453
-
Continuous time Bayesian networks for host level network intrusion detection
-
Xu J, Shelton CR. Continuous time Bayesian networks for host level network intrusion detection. In: ECML/PKDD (2); 2008. p. 613-27.
-
(2008)
ECML/PKDD
, vol.2
, pp. 613-27
-
-
Xu, J.1
Shelton, C.R.2
-
25
-
-
84872091823
-
A continuous time Bayesian network model for cardiogenic heart failure
-
Gatti E., Luciani D., Stella F. A continuous time Bayesian network model for cardiogenic heart failure. Flex Serv Manufact J 2011, 1-20.
-
(2011)
Flex Serv Manufact J
, pp. 1-20
-
-
Gatti, E.1
Luciani, D.2
Stella, F.3
-
28
-
-
77956930777
-
Importance sampling for continuous time Bayesian networks
-
Fan Y., Xu J., Shelton C.R. Importance sampling for continuous time Bayesian networks. J Mach Learn Res 2010, 11:2115-2140.
-
(2010)
J Mach Learn Res
, vol.11
, pp. 2115-2140
-
-
Fan, Y.1
Xu, J.2
Shelton, C.R.3
-
30
-
-
77958587560
-
Expectation maximization and complex duration distributions for continuous time Bayesian networks
-
Nodelman U, Shelton C, Koller D. Expectation maximization and complex duration distributions for continuous time Bayesian networks. In: Uncertainty in artificial intelligence; 2005b. p. 421-30.
-
(2005)
Uncertainty in artificial intelligence
, pp. 421-30
-
-
Nodelman, U.1
Shelton, C.2
Koller, D.3
-
32
-
-
37249089420
-
Predictive data mining in clinical medicine: current issues and guidelines
-
Bellazzi R., Zupan B. Predictive data mining in clinical medicine: current issues and guidelines. I J Med Inform 2008, 77(2):81-97.
-
(2008)
I J Med Inform
, vol.77
, Issue.2
, pp. 81-97
-
-
Bellazzi, R.1
Zupan, B.2
-
33
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demsar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 2006, 7:1-30.
-
(2006)
J Mach Learn Res
, vol.7
, pp. 1-30
-
-
Demsar, J.1
|