메뉴 건너뛰기




Volumn , Issue , 2007, Pages 22.1-22.10

Spatio-temporal connectionist networks

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84869866548     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Chapter
Times cited : (2)

References (27)
  • 1
    • 33845876447 scopus 로고    scopus 로고
    • Hierarchical reinforcement learning based on subgoal discovery and subpolicy specialization
    • F. Groen, N. Amato, A. Bonarini, E. Yoshida, and B. Krse (Eds.), Amsterdam, The Netherlands
    • Bakker, B. and J. Schmidhuber (2004). Hierarchical reinforcement learning based on subgoal discovery and subpolicy specialization. In F. Groen, N. Amato, A. Bonarini, E. Yoshida, and B. Krse (Eds.), Proceedings of the 8-th Conference on Intelligent Autonomous Systems, IAS-8, Amsterdam, The Netherlands, pp. 438-445.
    • (2004) Proceedings of the 8-th Conference on Intelligent Autonomous Systems, IAS-8 , pp. 438-445
    • Bakker, B.1    Schmidhuber, J.2
  • 2
    • 0037928080 scopus 로고    scopus 로고
    • A taxonomy for spatio-temporal connectionist networks revisited: The unsupervised case
    • Barreto, G. A., A. F. R. Araújo, and S. C. Kremer (2003). A taxonomy for spatio-temporal connectionist networks revisited: The unsupervised case. Neural Computation 15(6), 1255-1320.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1255-1320
    • Barreto, G.A.1    Araújo, A.F.R.2    Kremer, S.C.3
  • 3
    • 84902197186 scopus 로고    scopus 로고
    • Learning the long-term structure of the blues
    • J. Dorronsoro (Ed.), Berlin: Springer
    • Eck, D. and J. Schmidhuber (2002). Learning the long-term structure of the blues. In J. Dorronsoro (Ed.), Artificial Neural Networks - ICANN 2002 (Proceedings), pp. 284-289. Berlin: Springer.
    • (2002) Artificial Neural Networks - ICANN 2002 (Proceedings) , pp. 284-289
    • Eck, D.1    Schmidhuber, J.2
  • 4
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J. (1990). Finding structure in time. Cognitive Science 14, 179-211.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.1
  • 5
    • 0001419757 scopus 로고
    • Distributed representations, simple recurrent networks and grammatical structure
    • Elman, J. L. (1991). Distributed representations, simple recurrent networks and grammatical structure. Machine Learning 7(2/3), 195-226.
    • (1991) Machine Learning , vol.7 , Issue.2-3 , pp. 195-226
    • Elman, J.L.1
  • 6
    • 0000718697 scopus 로고
    • Higher order recurrent networks & grammatical inference
    • D. S. Touretzky (Ed.), 2, San Mateo, CA, Morgan Kaufmann
    • Giles, C., G. Sun, H. Chen, Y. Lee, and D. Chen (1990). Higher order recurrent networks & grammatical inference. In D. S. Touretzky (Ed.), Advances in Neural Information Processing Systems 2, San Mateo, CA, pp. 380-387. Morgan Kaufmann.
    • (1990) Advances in Neural Information Processing Systems , pp. 380-387
    • Giles, C.1    Sun, G.2    Chen, H.3    Lee, Y.4    Chen, D.5
  • 7
    • 0023513717 scopus 로고
    • Learning, invariance, and generalization in high-order neural networks
    • Giles, C. L. and T. Maxwell (1987). Learning, invariance, and generalization in high-order neural networks. Applied Optics 26(23), 4972-4978.
    • (1987) Applied Optics , vol.26 , Issue.23 , pp. 4972-4978
    • Giles, C.L.1    Maxwell, T.2
  • 8
    • 0000651312 scopus 로고
    • Extracting and learning an unknown grammar with recurrent neural networks
    • J. E. Moody, S. J. Hanson, and R. P. Lippmann (Eds.), 4, San Mateo, CA, Morgan Kaufmann
    • Giles, C. L., C. B. Miller, D. Chen, G. Z. Sun, H. H. Chen, and Y. C. Lee (1992). Extracting and learning an unknown grammar with recurrent neural networks. In J. E. Moody, S. J. Hanson, and R. P. Lippmann (Eds.), Advances in Neural Information Processing Systems 4, San Mateo, CA, pp. 317-324. Morgan Kaufmann.
    • (1992) Advances in Neural Information Processing Systems , pp. 317-324
    • Giles, C.L.1    Miller, C.B.2    Chen, D.3    Sun, G.Z.4    Chen, H.H.5    Lee, Y.C.6
  • 9
    • 84947459398 scopus 로고
    • Inserting rules into recurrent neural networks
    • S. Kung, F. Fallside, J. A. Sorenson, and C. Kamm (Eds.), Piscataway, NJ, IEEE Press
    • Giles, C. L. and C. Omlin (1992). Inserting rules into recurrent neural networks. In S. Kung, F. Fallside, J. A. Sorenson, and C. Kamm (Eds.), Neural Networks for Signal Processing II, Proceedings of the 1992 IEEE Workshop, Piscataway, NJ, pp. 13-22. IEEE Press.
    • (1992) Neural Networks for Signal Processing II, Proceedings of the 1992 IEEE Workshop , pp. 13-22
    • Giles, C.L.1    Omlin, C.2
  • 10
    • 0041914606 scopus 로고    scopus 로고
    • Gradient flow in recurrent nets: The difficulty of learning long-term dependencies
    • J. F. Kolen and S. C. Kremer (Eds.), Piscataway, NJ: IEEE Press
    • Hochreiter, S., Y. Bengio, P. Frasconi, and J. Schmidhuber (2001). Gradient flow in recurrent nets: The difficulty of learning long-term dependencies. In J. F. Kolen and S. C. Kremer (Eds.), A Field Guide to Dynamical Recurrent Networks, pp. 237-244. Piscataway, NJ: IEEE Press.
    • (2001) A Field Guide to Dynamical Recurrent Networks , pp. 237-244
    • Hochreiter, S.1    Bengio, Y.2    Frasconi, P.3    Schmidhuber, J.4
  • 12
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 13
    • 0002046921 scopus 로고
    • Fool's gold: Extracting finite state machines from recurrent network dynamics
    • J. D. Cowan, G. Tesauro, and J. Alspector (Eds.), 6, San Mateo, CA: Morgan Kaufmann
    • Kolen, J. F. (1994). Fool's gold: Extracting finite state machines from recurrent network dynamics. In J. D. Cowan, G. Tesauro, and J. Alspector (Eds.), Advances in Neuralinformation Processing Systems 6, Volume 6, pp. 501-508. San Mateo, CA: Morgan Kaufmann.
    • (1994) Advances in Neuralinformation Processing Systems , vol.6 , pp. 501-508
    • Kolen, J.F.1
  • 14
    • 0029342226 scopus 로고
    • On the computational power of elman-style recurrent networks
    • Kremer, S. C. (1995). On the computational power of elman-style recurrent networks. IEEE Transactions on Neural Networks 6(4), 1000-1004.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.4 , pp. 1000-1004
    • Kremer, S.C.1
  • 15
    • 0001117376 scopus 로고    scopus 로고
    • Spatio-temporal connectionist networks: A taxonomy and review
    • Kremer, S. C. (2001). Spatio-temporal connectionist networks: A taxonomy and review. Neural Computation 13(2), 249-306.
    • (2001) Neural Computation , vol.13 , Issue.2 , pp. 249-306
    • Kremer, S.C.1
  • 16
    • 51249194645 scopus 로고
    • A logical calculus of ideas immanent in nervous activity
    • McCulloch, W. and W. Pitts (1943). A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5,115-133.
    • (1943) Bulletin of Mathematical Biophysics , vol.5 , pp. 115-133
    • McCulloch, W.1    Pitts, W.2
  • 17
    • 0002291616 scopus 로고
    • Neural net architectures for temporal sequence processing
    • A. Weigend and N. Gershenfeld (Eds.), Reading, MA: Addison-Wesley
    • Mozer, M. C. (1994). Neural net architectures for temporal sequence processing. In A. Weigend and N. Gershenfeld (Eds.), Time Series Prediction, pp. 243-264. Reading, MA: Addison-Wesley.
    • (1994) Time Series Prediction , pp. 243-264
    • Mozer, M.C.1
  • 18
    • 85123129874 scopus 로고    scopus 로고
    • Learning long-term dependencies with reusable state modules and stochastic correlation
    • ASME
    • Palmer, J. and S. Kremer (2005). Learning long-term dependencies with reusable state modules and stochastic correlation. In Intelligent Engineering Systems Through Artificial Neural Networks, Volume 15, pp. 103-109. ASME.
    • (2005) Intelligent Engineering Systems Through Artificial Neural Networks , vol.15 , pp. 103-109
    • Palmer, J.1    Kremer, S.2
  • 19
    • 0141741865 scopus 로고    scopus 로고
    • Gradient calculations for dynamic recurrent networks
    • J. F. Kolen and S. C. Kremer (Eds.), Piscataway, NJ: IEEE Press
    • Pearlmutter, B. (2001). Gradient calculations for dynamic recurrent networks. In J. F. Kolen and S. C. Kremer (Eds.), A Field Guide to Dynamical Recurrent Networks. pp. 179-206. Piscataway, NJ: IEEE Press.
    • (2001) A Field Guide to Dynamical Recurrent Networks , pp. 179-206
    • Pearlmutter, B.1
  • 20
    • 10944259116 scopus 로고    scopus 로고
    • Dynamical recurrent networks in control
    • J. F. Kolen and S. C. Kremer (Eds.), Piscataway, NJ: IEEE Press
    • Prokhorov, D., G. Puskorius, and L. Feldkamp (2001). Dynamical recurrent networks in control. In J. F. Kolen and S. C. Kremer (Eds.), A Field Guide to Dynamical Recurrent Networks. pp. 143-152. Piscataway, NJ: IEEE Press.
    • (2001) A Field Guide to Dynamical Recurrent Networks , pp. 143-152
    • Prokhorov, D.1    Puskorius, G.2    Feldkamp, L.3
  • 22
    • 0000053463 scopus 로고
    • 3) time complexity learning algorithm for fully recurrent continually running networks
    • 3) time complexity learning algorithm for fully recurrent continually running networks. Neural Computation 4(2), 243-248.
    • (1992) Neural Computation , vol.4 , Issue.2 , pp. 243-248
    • Schmidhuber, J.H.1
  • 23
    • 85123134930 scopus 로고    scopus 로고
    • Universal computation and super-turing capabilities
    • J. F. Kolen and S. C.Kremer (Eds.), Piscataway, NJ: IEEE Press
    • Siegelmann, H. (2001). Universal computation and super-turing capabilities. In J. F. Kolen and S. C.Kremer (Eds.), A Field Guide to Dynamical Recurrent Networks, pp. 143-152. Piscataway, NJ: IEEE Press.
    • (2001) A Field Guide to Dynamical Recurrent Networks , pp. 143-152
    • Siegelmann, H.1
  • 24
    • 84921594874 scopus 로고    scopus 로고
    • Sequence processing and linguistic structure
    • J. F. Kolen and S. C. Kremer (Eds.), Piscataway, NJ: IEEE Press
    • Tabor, W. (2001). Sequence processing and linguistic structure. In J. F. Kolen and S. C. Kremer (Eds.), A Field Guide to Dynamical Recurrent Networks, pp. 291-310. Piscataway, NJ: IEEE Press.
    • (2001) A Field Guide to Dynamical Recurrent Networks , pp. 291-310
    • Tabor, W.1
  • 26
    • 0013025889 scopus 로고    scopus 로고
    • Representation beyond finite states: Alternatives of push-down automata
    • J. F. Kolen and S. C. Kremer (Eds.), Piscataway, NJ: IEEE Press
    • Wiles, J., A. Blair, and M. Bodén (2001). Representation beyond finite states: Alternatives of push-down automata. In J. F. Kolen and S. C. Kremer (Eds.), A Field Guide to Dynamical Recurrent Networks, pp. 129-142. Piscataway, NJ: IEEE Press.
    • (2001) A Field Guide to Dynamical Recurrent Networks , pp. 129-142
    • Wiles, J.1    Blair, A.2    Bodén, M.3
  • 27
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams, R. J. and D. Zipser (1989). A learning algorithm for continually running fully recurrent neural networks. Neural Computation 1 (2), 270-280.
    • (1989) Neural Computation , vol.1 , Issue.2 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.