-
1
-
-
33845876447
-
Hierarchical reinforcement learning based on subgoal discovery and subpolicy specialization
-
F. Groen, N. Amato, A. Bonarini, E. Yoshida, and B. Krse (Eds.), Amsterdam, The Netherlands
-
Bakker, B. and J. Schmidhuber (2004). Hierarchical reinforcement learning based on subgoal discovery and subpolicy specialization. In F. Groen, N. Amato, A. Bonarini, E. Yoshida, and B. Krse (Eds.), Proceedings of the 8-th Conference on Intelligent Autonomous Systems, IAS-8, Amsterdam, The Netherlands, pp. 438-445.
-
(2004)
Proceedings of the 8-th Conference on Intelligent Autonomous Systems, IAS-8
, pp. 438-445
-
-
Bakker, B.1
Schmidhuber, J.2
-
2
-
-
0037928080
-
A taxonomy for spatio-temporal connectionist networks revisited: The unsupervised case
-
Barreto, G. A., A. F. R. Araújo, and S. C. Kremer (2003). A taxonomy for spatio-temporal connectionist networks revisited: The unsupervised case. Neural Computation 15(6), 1255-1320.
-
(2003)
Neural Computation
, vol.15
, Issue.6
, pp. 1255-1320
-
-
Barreto, G.A.1
Araújo, A.F.R.2
Kremer, S.C.3
-
3
-
-
84902197186
-
Learning the long-term structure of the blues
-
J. Dorronsoro (Ed.), Berlin: Springer
-
Eck, D. and J. Schmidhuber (2002). Learning the long-term structure of the blues. In J. Dorronsoro (Ed.), Artificial Neural Networks - ICANN 2002 (Proceedings), pp. 284-289. Berlin: Springer.
-
(2002)
Artificial Neural Networks - ICANN 2002 (Proceedings)
, pp. 284-289
-
-
Eck, D.1
Schmidhuber, J.2
-
4
-
-
26444565569
-
Finding structure in time
-
Elman, J. (1990). Finding structure in time. Cognitive Science 14, 179-211.
-
(1990)
Cognitive Science
, vol.14
, pp. 179-211
-
-
Elman, J.1
-
5
-
-
0001419757
-
Distributed representations, simple recurrent networks and grammatical structure
-
Elman, J. L. (1991). Distributed representations, simple recurrent networks and grammatical structure. Machine Learning 7(2/3), 195-226.
-
(1991)
Machine Learning
, vol.7
, Issue.2-3
, pp. 195-226
-
-
Elman, J.L.1
-
6
-
-
0000718697
-
Higher order recurrent networks & grammatical inference
-
D. S. Touretzky (Ed.), 2, San Mateo, CA, Morgan Kaufmann
-
Giles, C., G. Sun, H. Chen, Y. Lee, and D. Chen (1990). Higher order recurrent networks & grammatical inference. In D. S. Touretzky (Ed.), Advances in Neural Information Processing Systems 2, San Mateo, CA, pp. 380-387. Morgan Kaufmann.
-
(1990)
Advances in Neural Information Processing Systems
, pp. 380-387
-
-
Giles, C.1
Sun, G.2
Chen, H.3
Lee, Y.4
Chen, D.5
-
7
-
-
0023513717
-
Learning, invariance, and generalization in high-order neural networks
-
Giles, C. L. and T. Maxwell (1987). Learning, invariance, and generalization in high-order neural networks. Applied Optics 26(23), 4972-4978.
-
(1987)
Applied Optics
, vol.26
, Issue.23
, pp. 4972-4978
-
-
Giles, C.L.1
Maxwell, T.2
-
8
-
-
0000651312
-
Extracting and learning an unknown grammar with recurrent neural networks
-
J. E. Moody, S. J. Hanson, and R. P. Lippmann (Eds.), 4, San Mateo, CA, Morgan Kaufmann
-
Giles, C. L., C. B. Miller, D. Chen, G. Z. Sun, H. H. Chen, and Y. C. Lee (1992). Extracting and learning an unknown grammar with recurrent neural networks. In J. E. Moody, S. J. Hanson, and R. P. Lippmann (Eds.), Advances in Neural Information Processing Systems 4, San Mateo, CA, pp. 317-324. Morgan Kaufmann.
-
(1992)
Advances in Neural Information Processing Systems
, pp. 317-324
-
-
Giles, C.L.1
Miller, C.B.2
Chen, D.3
Sun, G.Z.4
Chen, H.H.5
Lee, Y.C.6
-
9
-
-
84947459398
-
Inserting rules into recurrent neural networks
-
S. Kung, F. Fallside, J. A. Sorenson, and C. Kamm (Eds.), Piscataway, NJ, IEEE Press
-
Giles, C. L. and C. Omlin (1992). Inserting rules into recurrent neural networks. In S. Kung, F. Fallside, J. A. Sorenson, and C. Kamm (Eds.), Neural Networks for Signal Processing II, Proceedings of the 1992 IEEE Workshop, Piscataway, NJ, pp. 13-22. IEEE Press.
-
(1992)
Neural Networks for Signal Processing II, Proceedings of the 1992 IEEE Workshop
, pp. 13-22
-
-
Giles, C.L.1
Omlin, C.2
-
10
-
-
0041914606
-
Gradient flow in recurrent nets: The difficulty of learning long-term dependencies
-
J. F. Kolen and S. C. Kremer (Eds.), Piscataway, NJ: IEEE Press
-
Hochreiter, S., Y. Bengio, P. Frasconi, and J. Schmidhuber (2001). Gradient flow in recurrent nets: The difficulty of learning long-term dependencies. In J. F. Kolen and S. C. Kremer (Eds.), A Field Guide to Dynamical Recurrent Networks, pp. 237-244. Piscataway, NJ: IEEE Press.
-
(2001)
A Field Guide to Dynamical Recurrent Networks
, pp. 237-244
-
-
Hochreiter, S.1
Bengio, Y.2
Frasconi, P.3
Schmidhuber, J.4
-
12
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359-366.
-
(1989)
Neural Networks
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
13
-
-
0002046921
-
Fool's gold: Extracting finite state machines from recurrent network dynamics
-
J. D. Cowan, G. Tesauro, and J. Alspector (Eds.), 6, San Mateo, CA: Morgan Kaufmann
-
Kolen, J. F. (1994). Fool's gold: Extracting finite state machines from recurrent network dynamics. In J. D. Cowan, G. Tesauro, and J. Alspector (Eds.), Advances in Neuralinformation Processing Systems 6, Volume 6, pp. 501-508. San Mateo, CA: Morgan Kaufmann.
-
(1994)
Advances in Neuralinformation Processing Systems
, vol.6
, pp. 501-508
-
-
Kolen, J.F.1
-
14
-
-
0029342226
-
On the computational power of elman-style recurrent networks
-
Kremer, S. C. (1995). On the computational power of elman-style recurrent networks. IEEE Transactions on Neural Networks 6(4), 1000-1004.
-
(1995)
IEEE Transactions on Neural Networks
, vol.6
, Issue.4
, pp. 1000-1004
-
-
Kremer, S.C.1
-
15
-
-
0001117376
-
Spatio-temporal connectionist networks: A taxonomy and review
-
Kremer, S. C. (2001). Spatio-temporal connectionist networks: A taxonomy and review. Neural Computation 13(2), 249-306.
-
(2001)
Neural Computation
, vol.13
, Issue.2
, pp. 249-306
-
-
Kremer, S.C.1
-
16
-
-
51249194645
-
A logical calculus of ideas immanent in nervous activity
-
McCulloch, W. and W. Pitts (1943). A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5,115-133.
-
(1943)
Bulletin of Mathematical Biophysics
, vol.5
, pp. 115-133
-
-
McCulloch, W.1
Pitts, W.2
-
17
-
-
0002291616
-
Neural net architectures for temporal sequence processing
-
A. Weigend and N. Gershenfeld (Eds.), Reading, MA: Addison-Wesley
-
Mozer, M. C. (1994). Neural net architectures for temporal sequence processing. In A. Weigend and N. Gershenfeld (Eds.), Time Series Prediction, pp. 243-264. Reading, MA: Addison-Wesley.
-
(1994)
Time Series Prediction
, pp. 243-264
-
-
Mozer, M.C.1
-
18
-
-
85123129874
-
Learning long-term dependencies with reusable state modules and stochastic correlation
-
ASME
-
Palmer, J. and S. Kremer (2005). Learning long-term dependencies with reusable state modules and stochastic correlation. In Intelligent Engineering Systems Through Artificial Neural Networks, Volume 15, pp. 103-109. ASME.
-
(2005)
Intelligent Engineering Systems Through Artificial Neural Networks
, vol.15
, pp. 103-109
-
-
Palmer, J.1
Kremer, S.2
-
19
-
-
0141741865
-
Gradient calculations for dynamic recurrent networks
-
J. F. Kolen and S. C. Kremer (Eds.), Piscataway, NJ: IEEE Press
-
Pearlmutter, B. (2001). Gradient calculations for dynamic recurrent networks. In J. F. Kolen and S. C. Kremer (Eds.), A Field Guide to Dynamical Recurrent Networks. pp. 179-206. Piscataway, NJ: IEEE Press.
-
(2001)
A Field Guide to Dynamical Recurrent Networks
, pp. 179-206
-
-
Pearlmutter, B.1
-
20
-
-
10944259116
-
Dynamical recurrent networks in control
-
J. F. Kolen and S. C. Kremer (Eds.), Piscataway, NJ: IEEE Press
-
Prokhorov, D., G. Puskorius, and L. Feldkamp (2001). Dynamical recurrent networks in control. In J. F. Kolen and S. C. Kremer (Eds.), A Field Guide to Dynamical Recurrent Networks. pp. 143-152. Piscataway, NJ: IEEE Press.
-
(2001)
A Field Guide to Dynamical Recurrent Networks
, pp. 143-152
-
-
Prokhorov, D.1
Puskorius, G.2
Feldkamp, L.3
-
21
-
-
0000646059
-
Learning internal representation by error propagation
-
J. L. McClelland, D. Rumelhart, and the P. D. P. Group (Eds.), Cambridge, MA: MIT Press
-
Rumelhart, D., G. Hinton, and R. Williams (1986). Learning internal representation by error propagation. In J. L. McClelland, D. Rumelhart, and the P. D. P. Group (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations. Cambridge, MA: MIT Press.
-
(1986)
Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations
-
-
Rumelhart, D.1
Hinton, G.2
Williams, R.3
-
22
-
-
0000053463
-
3) time complexity learning algorithm for fully recurrent continually running networks
-
3) time complexity learning algorithm for fully recurrent continually running networks. Neural Computation 4(2), 243-248.
-
(1992)
Neural Computation
, vol.4
, Issue.2
, pp. 243-248
-
-
Schmidhuber, J.H.1
-
23
-
-
85123134930
-
Universal computation and super-turing capabilities
-
J. F. Kolen and S. C.Kremer (Eds.), Piscataway, NJ: IEEE Press
-
Siegelmann, H. (2001). Universal computation and super-turing capabilities. In J. F. Kolen and S. C.Kremer (Eds.), A Field Guide to Dynamical Recurrent Networks, pp. 143-152. Piscataway, NJ: IEEE Press.
-
(2001)
A Field Guide to Dynamical Recurrent Networks
, pp. 143-152
-
-
Siegelmann, H.1
-
24
-
-
84921594874
-
Sequence processing and linguistic structure
-
J. F. Kolen and S. C. Kremer (Eds.), Piscataway, NJ: IEEE Press
-
Tabor, W. (2001). Sequence processing and linguistic structure. In J. F. Kolen and S. C. Kremer (Eds.), A Field Guide to Dynamical Recurrent Networks, pp. 291-310. Piscataway, NJ: IEEE Press.
-
(2001)
A Field Guide to Dynamical Recurrent Networks
, pp. 291-310
-
-
Tabor, W.1
-
26
-
-
0013025889
-
Representation beyond finite states: Alternatives of push-down automata
-
J. F. Kolen and S. C. Kremer (Eds.), Piscataway, NJ: IEEE Press
-
Wiles, J., A. Blair, and M. Bodén (2001). Representation beyond finite states: Alternatives of push-down automata. In J. F. Kolen and S. C. Kremer (Eds.), A Field Guide to Dynamical Recurrent Networks, pp. 129-142. Piscataway, NJ: IEEE Press.
-
(2001)
A Field Guide to Dynamical Recurrent Networks
, pp. 129-142
-
-
Wiles, J.1
Blair, A.2
Bodén, M.3
-
27
-
-
0001202594
-
A learning algorithm for continually running fully recurrent neural networks
-
Williams, R. J. and D. Zipser (1989). A learning algorithm for continually running fully recurrent neural networks. Neural Computation 1 (2), 270-280.
-
(1989)
Neural Computation
, vol.1
, Issue.2
, pp. 270-280
-
-
Williams, R.J.1
Zipser, D.2
|