메뉴 건너뛰기




Volumn 26, Issue 3, 2013, Pages 344-350

Fractional equations of Volterra type involving a Riemann-Liouville derivative

Author keywords

Equations of Volterra type; Existence of solutions; Monotone iterative method; Riemann Liouville fractional derivatives

Indexed keywords

A-MONOTONE; BANACH FIXED-POINT THEOREM; EXISTENCE OF SOLUTIONS; EXISTENCE RESULTS; FRACTIONAL EQUATION; MONOTONE ITERATIVE METHODS; RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES; VOLTERRA; WEIGHTED NORM;

EID: 84869490527     PISSN: 08939659     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.aml.2012.10.002     Document Type: Article
Times cited : (33)

References (10)
  • 1
    • 76149103265 scopus 로고    scopus 로고
    • Fractional differential equations with deviating arguments
    • T. Jankowski Fractional differential equations with deviating arguments Dynam. Systems Appl. 17 2008 677 684
    • (2008) Dynam. Systems Appl. , vol.17 , pp. 677-684
    • Jankowski, T.1
  • 3
    • 84863465072 scopus 로고    scopus 로고
    • Method of upper and lower solutions for fractional differential equations
    • L. Lin, X. Liu, and H. Fang Method of upper and lower solutions for fractional differential equations Electron. J. Differential Equations 100 2012 1 13
    • (2012) Electron. J. Differential Equations , Issue.100 , pp. 1-13
    • Lin, L.1    Liu, X.2    Fang, H.3
  • 4
    • 72149110341 scopus 로고    scopus 로고
    • Monotone iterative technique and existence results for fractional differential equations
    • F.A. McRae Monotone iterative technique and existence results for fractional differential equations Nonlinear Anal. 71 2009 6093 6096
    • (2009) Nonlinear Anal. , vol.71 , pp. 6093-6096
    • McRae, F.A.1
  • 6
    • 79959409393 scopus 로고    scopus 로고
    • Monotone iterative technique for fractional differential equations with periodic boundary boundary conditions
    • J.D. Ramirez, and A.S. Vatsala Monotone iterative technique for fractional differential equations with periodic boundary boundary conditions Opuscula Math. 29 2009 289 304
    • (2009) Opuscula Math. , vol.29 , pp. 289-304
    • Ramirez, J.D.1    Vatsala, A.S.2
  • 7
    • 77049084247 scopus 로고    scopus 로고
    • Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative
    • Z. Wei, G. Li, and J. Che Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative J. Math. Anal. Appl. 367 2010 260 272
    • (2010) J. Math. Anal. Appl. , vol.367 , pp. 260-272
    • Wei, Z.1    Li, G.2    Che, J.3
  • 8
    • 84856213616 scopus 로고    scopus 로고
    • Monotone iterative technique for boundary value problems of a nonlinear fractional differential equations with deviating arguments
    • G. Wang Monotone iterative technique for boundary value problems of a nonlinear fractional differential equations with deviating arguments J. Comput. Appl. Math. 236 2012 2425 2430
    • (2012) J. Comput. Appl. Math. , vol.236 , pp. 2425-2430
    • Wang, G.1
  • 9
    • 84862824368 scopus 로고    scopus 로고
    • Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations
    • G. Wang, R.P. Agarwal, and A. Cabada Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations Appl. Math. Lett. 25 2012 1019 1024
    • (2012) Appl. Math. Lett. , vol.25 , pp. 1019-1024
    • Wang, G.1    Agarwal, R.P.2    Cabada, A.3
  • 10
    • 67349088414 scopus 로고    scopus 로고
    • Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives
    • S. Zhang Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives Nonlinear Anal. 71 2009 2087 2093
    • (2009) Nonlinear Anal. , vol.71 , pp. 2087-2093
    • Zhang, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.