메뉴 건너뛰기




Volumn 25, Issue 6, 2012, Pages 1019-1024

Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations

Author keywords

Monotone iterative technique; RiemannLiouville fractional derivatives; Systems of nonlinear fractional differential equations; Upper and lower solutions

Indexed keywords

COMPARISON RESULT; EXISTENCE OF SOLUTIONS; EXISTENCE RESULTS; FRACTIONAL DIFFERENTIAL EQUATIONS; METHOD OF UPPER AND LOWER SOLUTIONS; MONOTONE ITERATIVE TECHNIQUES; RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES; UPPER AND LOWER SOLUTIONS;

EID: 84862824368     PISSN: 08939659     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.aml.2011.09.078     Document Type: Article
Times cited : (125)

References (27)
  • 5
    • 0038405057 scopus 로고    scopus 로고
    • Existence of positive solutions of nonlinear fractional differential equations
    • DOI 10.1016/S0022-247X(02)00716-3
    • A. Babakhani, and Varsha Daftardar-Gejji Existence of positive solutions of nonlinear fractional differential equations J. Math. Anal. Appl. 278 2003 434 442 (Pubitemid 36530147)
    • (2003) Journal of Mathematical Analysis and Applications , vol.278 , Issue.2 , pp. 434-442
    • Babakhani, A.1    Daftardar-Gejji, V.2
  • 6
    • 53949111458 scopus 로고    scopus 로고
    • Basic theory of fractional differential equations
    • V. Lakshmikantham, and A.S. Vatsala Basic theory of fractional differential equations Nonlinear Anal. 69 8 2008 2677 2682
    • (2008) Nonlinear Anal. , vol.69 , Issue.8 , pp. 2677-2682
    • Lakshmikantham, V.1    Vatsala, A.S.2
  • 7
    • 45049084850 scopus 로고    scopus 로고
    • General uniqueness and monotone iterative technique for fractional differential equations
    • V. Lakshmikanthan, and A.S. Vatsala General uniqueness and monotone iterative technique for fractional differential equations Appl. Math. Lett. 21 2008 828 834
    • (2008) Appl. Math. Lett. , vol.21 , pp. 828-834
    • Lakshmikanthan, V.1    Vatsala, A.S.2
  • 8
    • 71649083074 scopus 로고    scopus 로고
    • On positive solutions of a nonlocal fractional boundary value problem
    • Z.B. Bai On positive solutions of a nonlocal fractional boundary value problem Nonlinear Anal. 72 2010 916 924
    • (2010) Nonlinear Anal. , vol.72 , pp. 916-924
    • Bai, Z.B.1
  • 9
    • 25144460994 scopus 로고    scopus 로고
    • Positive solutions of boundary value problems of nonlinear fractional differential equation
    • Z.B. Bai, and H.S. L Positive solutions of boundary value problems of nonlinear fractional differential equation J. Math. Anal. Appl. 311 2005 495 505
    • (2005) J. Math. Anal. Appl. , vol.311 , pp. 495-505
    • Bai, Z.B.1    S, L.H.2
  • 10
    • 67349088414 scopus 로고    scopus 로고
    • Monotone iterative method for initial value problem involving RiemannLiouville fractional derivatives
    • Zhang Shuqin Monotone iterative method for initial value problem involving RiemannLiouville fractional derivatives Nonlinear Anal. 71 2009 2087 2093
    • (2009) Nonlinear Anal. , vol.71 , pp. 2087-2093
    • Shuqin, Z.1
  • 11
    • 0034670545 scopus 로고    scopus 로고
    • The existence of a positive solution for a nonlinear fractional differential equation
    • Zhang Shuqin The existence of a positive solution for a nonlinear fractional differential equation J. Math. Anal. Appl. 252 2000 804 812
    • (2000) J. Math. Anal. Appl. , vol.252 , pp. 804-812
    • Shuqin, Z.1
  • 12
    • 71649091559 scopus 로고    scopus 로고
    • Existence results for fractional order semilinear functional differential equations with nondense domain
    • M. Belmekki, and M. Benchohra Existence results for fractional order semilinear functional differential equations with nondense domain Nonlinear Anal. 72 2010 925 932
    • (2010) Nonlinear Anal. , vol.72 , pp. 925-932
    • Belmekki, M.1    Benchohra, M.2
  • 13
    • 70249121999 scopus 로고    scopus 로고
    • Existence of periodic solution for a nonlinear fractional differential equation
    • Article ID 324561
    • M. Belmekki, J.J. Nieto, and R. Rodriguez-Lopez Existence of periodic solution for a nonlinear fractional differential equation Bound. Value Probl. 2009 2009 18 Article ID 324561
    • (2009) Bound. Value Probl. , vol.2009 , pp. 18
    • Belmekki, M.1    Nieto, J.J.2    Rodriguez-Lopez, R.3
  • 14
    • 77049084247 scopus 로고    scopus 로고
    • Initial value problems for fractional differential equations involving RiemannLiouville sequential fractional derivative
    • 10.1016/j.jmaa.2010.01.023
    • Z. Wei, Q. Li, and J. Che Initial value problems for fractional differential equations involving RiemannLiouville sequential fractional derivative J. Math. Anal. Appl. 2010 10.1016/j.jmaa.2010.01.023
    • (2010) J. Math. Anal. Appl.
    • Wei, Z.1    Li, Q.2    Che, J.3
  • 15
    • 36248933572 scopus 로고    scopus 로고
    • Positive solutions for boundary value problem of nonlinear fractional differential equation
    • Article ID 10368
    • Moustafa El-Shahed Positive solutions for boundary value problem of nonlinear fractional differential equation Abstr. Appl. Anal. 2007 2007 8 Article ID 10368
    • (2007) Abstr. Appl. Anal. , vol.2007 , pp. 8
    • El-Shahed, M.1
  • 16
    • 72149110341 scopus 로고    scopus 로고
    • Monotone iterative technique and existence results for fractional differential equations
    • 10.1016/j.na.2009.05.074
    • F.A. McRae Monotone iterative technique and existence results for fractional differential equations Nonlinear Anal. 2009 10.1016/j.na.2009.05.074
    • (2009) Nonlinear Anal.
    • McRae, F.A.1
  • 17
    • 1242321329 scopus 로고    scopus 로고
    • The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations
    • C. Bai, and J. Fang The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations Appl. Math. Comput. 150 2004 611 621
    • (2004) Appl. Math. Comput. , vol.150 , pp. 611-621
    • Bai, C.1    Fang, J.2
  • 18
    • 43049157795 scopus 로고    scopus 로고
    • Numerical solutions of coupled Burgers equations with time and space fractional derivatives
    • Y. Chen, and H. An Numerical solutions of coupled Burgers equations with time and space fractional derivatives Appl. Math. Comput. 200 2008 87 95
    • (2008) Appl. Math. Comput. , vol.200 , pp. 87-95
    • Chen, Y.1    An, H.2
  • 19
    • 47849129193 scopus 로고    scopus 로고
    • Mathematical modeling of time fractional reactiondiffusion systems
    • V. Gafiychuk, B. Datsko, and V. Meleshko Mathematical modeling of time fractional reactiondiffusion systems J. Comput. Appl. Math. 220 2008 215 225
    • (2008) J. Comput. Appl. Math. , vol.220 , pp. 215-225
    • Gafiychuk, V.1    Datsko, B.2    Meleshko, V.3
  • 21
    • 33746218471 scopus 로고    scopus 로고
    • Solving a system of nonlinear fractional differential equations using Adomian decomposition
    • DOI 10.1016/j.cam.2005.10.017, PII S0377042705006278
    • Hossein Jafari, and Varsha Daftardar-Gejji Solving a system of nonlinear fractional differential equations using Adomian decomposition J. Comput. Appl. Math. 196 2006 644 651 (Pubitemid 44093887)
    • (2006) Journal of Computational and Applied Mathematics , vol.196 , Issue.2 , pp. 644-651
    • Jafari, H.1    Daftardar-Gejji, V.2
  • 22
    • 10844262723 scopus 로고    scopus 로고
    • Positive solutions of a system of non-autonomous fractional differential equations
    • DOI 10.1016/j.jmaa.2004.08.007, PII S0022247X04006456
    • Varsha Daftardar-Gejji Positive solutions of a system of non-autonomous fractional differential equations J. Math. Anal. Appl. 302 2005 56 64 (Pubitemid 40004146)
    • (2005) Journal of Mathematical Analysis and Applications , vol.302 , Issue.1 , pp. 56-64
    • Daftardar-Gejji, V.1
  • 23
    • 27744589296 scopus 로고    scopus 로고
    • Dα fractional control of robotic time-delay systems
    • Dα fractional control of robotic time-delay systems Mech. Res. Comm. 33 2006 269 279
    • (2006) Mech. Res. Comm. , vol.33 , pp. 269-279
    • Lazarevi, M.P.1
  • 24
    • 55649098198 scopus 로고    scopus 로고
    • Boundary value problem for a coupled system of nonlinear fractional differential equations
    • X. Su Boundary value problem for a coupled system of nonlinear fractional differential equations Appl. Math. Lett. 22 2009 64 69
    • (2009) Appl. Math. Lett. , vol.22 , pp. 64-69
    • Su, X.1
  • 25
    • 70349131961 scopus 로고    scopus 로고
    • Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions
    • B. Ahmad, and J.J. Nieto Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions Comput. Math. Appl. 58 2009 1838 1843
    • (2009) Comput. Math. Appl. , vol.58 , pp. 1838-1843
    • Ahmad, B.1    Nieto, J.J.2
  • 26
    • 58849105367 scopus 로고    scopus 로고
    • Integral boundary value problems for first order integrodifferential equations with deviating arguments
    • Guotao Wang, Guangxing Song, and Lihong Zhang Integral boundary value problems for first order integrodifferential equations with deviating arguments J. Comput. Appl. Math. 225 2009 602 611
    • (2009) J. Comput. Appl. Math. , vol.225 , pp. 602-611
    • Wang, G.1    Song, G.2    Zhang, L.3
  • 27
    • 39449129642 scopus 로고    scopus 로고
    • Existence results and monotone iterative technique for impulsive hybrid functional differential systems with anticipation and retardation
    • DOI 10.1016/j.amc.2007.07.065, PII S0096300307007977
    • Bashir Ahmad, and S. Sivasundaram Existence results and monotone iterative technique for impulsive hybrid functional differential systems with anticipation and retardation Appl. Math. Comput. 197 2008 515 524 (Pubitemid 351273767)
    • (2008) Applied Mathematics and Computation , vol.197 , Issue.2 , pp. 515-524
    • Ahmad, B.1    Sivasundaram, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.