-
1
-
-
33747670266
-
Learning factor graphs in polynomial time and sample complexity
-
MR2274423
-
ABBEEL, P., KOLLER, D. and NG, A. Y. (2006). Learning factor graphs in polynomial time and sample complexity. J. Mach. Learn. Res. 7 1743-1788. MR2274423
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1743-1788
-
-
Abbeel, P.1
Koller, D.2
Ng, A.Y.3
-
2
-
-
0036013593
-
Statistical mechanics of complex networks
-
MR1895096
-
ALBERT, R. and BARABÁSI, A.-L. (2002). Statistical mechanics of complex networks. Rev. Modern Phys. 74 47-97. MR1895096
-
(2002)
Rev. Modern Phys.
, vol.74
, pp. 47-97
-
-
Albert, R.1
Barabási, A.-L.2
-
3
-
-
84860632093
-
-
Preprint. Available at arXiv: 1107.1270
-
ANANDKUMAR, A., TAN, V. Y. F., HUANG, F. and WILLSKY, A. S. (2011). Highdimensional Gaussian graphical model selection: Tractable graph families. Preprint. Available at arXiv:1107.1270.
-
(2011)
Highdimensional Gaussian Graphical Model Selection: Tractable Graph Families
-
-
Anandkumar, A.1
Tan, V.Y.F.2
Huang, F.3
Willsky, A.S.4
-
4
-
-
84869152679
-
-
DOI:10.1214/12-AOS1009SUPP
-
ANANDKUMAR, A., TAN, V. Y. F., HUANG, F. and WILLSKY, A. S. (2012). Supplement to "High-dimensional structure learning of Ising models: Local separation criterion." DOI:10.1214/12-AOS1009SUPP.
-
(2012)
Supplement To "High-Dimensional Structure Learning of Ising Models: Local Separation Criterion
-
-
Anandkumar, A.1
Tan, V.Y.F.2
Huang, F.3
Willsky, A.S.4
-
5
-
-
70349113473
-
Generating random graphs with large girth
-
SIAM, Philadelphia, PA. MR2809261
-
BAYATI, M.,MONTANARI, A. and SABERI, A. (2009). Generating random graphs with large girth. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms 566-575. SIAM, Philadelphia, PA. MR2809261
-
(2009)
Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms
, pp. 566-575
-
-
Bayati, M.1
Montanari, A.2
Saberi, A.3
-
7
-
-
51849151948
-
The complexity of distinguishing markov random fields
-
Springer, Berlin. MR2538798
-
BOGDANOV, A., MOSSEL, E. and VADHAN, S. (2008). The complexity of distinguishing Markov random fields. In Approximation, Randomization and Combinatorial Optimization. Lecture Notes in Comput. Sci. 5171 331-342. Springer, Berlin. MR2538798
-
(2008)
Approximation, Randomization and Combinatorial Optimization. Lecture Notes in Comput. Sci.
, vol.5171
, pp. 331-342
-
-
Bogdanov, A.1
Mossel, E.2
Vadhan, S.3
-
8
-
-
0004219960
-
-
Academic Press, London. MR0809996
-
BOLLOBÁS, B. (1985). Random Graphs. Academic Press, London. MR0809996
-
(1985)
Random Graphs
-
-
Bollobás, B.1
-
10
-
-
51849099933
-
Reconstruction ofmarkov random fields from samples: Some observations and algorithms
-
Springer, Berlin. MR2538799
-
BRESLER, G.,MOSSEL, E. and SLY, A. (2008). Reconstruction ofMarkov random fields from samples: Some observations and algorithms. In Approximation, Randomization and Combinatorial Optimization. Lecture Notes in Computer Science 5171 343-356. Springer, Berlin. MR2538799
-
(2008)
Approximation, Randomization and Combinatorial Optimization. Lecture Notes in Computer Science
, vol.5171
, pp. 343-356
-
-
Bresler G.Mossel, E.1
Sly, A.2
-
11
-
-
84872075451
-
Latent variable graphical model selection via convex optimization
-
To appear. Preprint. Available on ArXiv
-
CHANDRASEKARAN, V., PARRILO, P. A. andWILLSKY, A. S. (2010). Latent variable graphical model selection via convex optimization. Ann. Statist. To appear. Preprint. Available on ArXiv.
-
(2010)
Ann. Statist
-
-
Chandrasekaran, V.1
Parrilo, P.A.2
Willsky, A.S.3
-
13
-
-
0036567524
-
Learning bayesian networks from data: An information-Theory based approach
-
MR1906473
-
CHENG, J., GREINER, R., KELLY, J., BELL, D. and LIU, W. (2002). Learning Bayesian networks from data: An information-Theory based approach. Artificial Intelligence 137 43-90. MR1906473
-
(2002)
Artificial Intelligence
, vol.137
, pp. 43-90
-
-
Cheng, J.1
Greiner, R.2
Kelly, J.3
Bell, D.4
Liu, W.5
-
14
-
-
77956006912
-
Exploiting hierarchical context on a large database of object categories
-
CHOI, M. J., LIM, J. J., TORRALBA, A. andWILLSKY, A. S. (2010). Exploiting hierarchical context on a large database of object categories. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).
-
(2010)
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)
-
-
Choi, M.J.1
Lim, J.J.2
Torralba, A.3
Willsky, A.S.4
-
15
-
-
79960117913
-
Learning latent tree graphical models
-
MR2813153
-
CHOI, M. J., TAN, V. Y. F., ANANDKUMAR, A. andWILLSKY, A. S. (2011). Learning latent tree graphical models. J. Mach. Learn. Res. 12 1771-1812. MR2813153
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 1771-1812
-
-
Choi, M.J.1
Tan, V.Y.F.2
Anandkumar, A.3
Willsky, A.S.4
-
16
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
CHOW, C. and LIU, C. (1968). Approximating Discrete Probability Distributions with Dependence Trees. IEEE Tran. on Information Theory 14 462-467.
-
(1968)
IEEE Tran. on Information Theory
, vol.14
, pp. 462-467
-
-
Chow, C.1
Liu, C.2
-
17
-
-
0003365565
-
Spectral graph theory
-
Published for the Conference Board of the Mathematical Sciences, Washington, DC. MR1421568
-
CHUNG, F. R. K. (1997). Spectral Graph Theory. CBMS Regional Conference Series in Mathematics 92. Published for the Conference Board of the Mathematical Sciences, Washington, DC. MR1421568
-
(1997)
CBMS Regional Conference Series in Mathematics
, vol.92
-
-
Chung, F.R.K.1
-
18
-
-
77952878812
-
Complex graphs and network
-
Providence, RI
-
CHUNG, F. R. K. and LU, L. (2006). Complex Graphs and Network. Amer. Math. Soc., Providence, RI.
-
(2006)
Amer. Math. Soc.
-
-
Chung, F.R.K.1
Lu, L.2
-
21
-
-
0003516147
-
-
Cambridge Univ Press, Cambridge
-
DURBIN, R., EDDY, S. R., KROGH, A. and MITCHISON, G. (1999). Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge Univ. Press, Cambridge.
-
(1999)
Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids
-
-
Durbin, R.1
Eddy, S.R.2
Krogh, A.3
Mitchison, G.4
-
22
-
-
0038099322
-
Diameter and treewidth in minor-closed graph families
-
MR1759751
-
EPPSTEIN, D. (2000). Diameter and treewidth in minor-closed graph families. Algorithmica 27 275-291. MR1759751
-
(2000)
Algorithmica
, vol.27
, pp. 275-291
-
-
Eppstein, D.1
-
23
-
-
0031125128
-
Rational group decision making: A random field ising model at t = 0
-
GALAM, S. (1997). Rational group decision making: A random field Ising model at T = 0. Physica A: Statistical and Theoretical Physics 238 66-80.
-
(1997)
Physica A: Statistical and Theoretical Physics
, vol.238
, pp. 66-80
-
-
Galam, S.1
-
24
-
-
67650527011
-
On the girth of random cayley graphs
-
MR2532876
-
GAMBURD, A., HOORY, S., SHAHSHAHANI, M., SHALEV, A. and VIRÁG, B. (2009). On the girth of random Cayley graphs. Random Structures Algorithms 35 100-117. MR2532876
-
(2009)
Random Structures Algorithms
, vol.35
, pp. 100-117
-
-
Gamburd, A.1
Hoory, S.2
Shahshahani, M.3
Shalev, A.4
Virág, B.5
-
25
-
-
31044433615
-
Ising-based model of opinion formation in a complex network of interpersonal interactions
-
GRABOWSKI, A. andKOSINSKI, R. (2006). Ising-based model of opinion formation in a complex network of interpersonal interactions. Physica A: Statistical Mechanics and Its Applications 361 651-664.
-
(2006)
Physica A: Statistical Mechanics and Its Applications
, vol.361
, pp. 651-664
-
-
Grabowski, A.1
Kosinski, R.2
-
26
-
-
33947524259
-
Estimating high-dimensional directed acyclic graphs with the pc-Algorithm
-
KALISCH, M. and BÜHLMANN, P. (2007). Estimating high-dimensional directed acyclic graphs with the PC-Algorithm. J. Mach. Learn. Res. 8 613-636.
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 613-636
-
-
Kalisch, M.1
Bühlmann, P.2
-
27
-
-
64049102502
-
Learning markov networks: Maximum bounded treewidth graphs
-
(Washington, DC, 2001 392-401. SIAM, Philadelphia, PA. MR1958431
-
KARGER, D. and SREBRO, N. (2001). Learning Markov networks: Maximum bounded treewidth graphs. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms (Washington, DC, 2001) 392-401. SIAM, Philadelphia, PA. MR1958431
-
(2001)
Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms
-
-
Karger, D.1
Srebro, N.2
-
30
-
-
78751580385
-
Ising-like agent-based technology diffusion model adoption patterns vs seeding strategies
-
LACIANA, C. E. and ROVERE, S. L. (2010). Ising-like agent-based technology diffusion model: Adoption patterns vs. seeding strategies. Physica A: Statistical Mechanics and Its Applications 390 1139-1149.
-
(2010)
Physica A Statistical Mechanics and Its Applications
, vol.390
, pp. 1139-1149
-
-
Laciana, C.E.1
Rovere, S.L.2
-
31
-
-
0012829803
-
Graphical models
-
Oxford Univ. Press, New York. MR1419991
-
LAURITZEN, S. L. (1996). Graphical Models. Oxford Statistical Science Series 17. Oxford Univ. Press, New York. MR1419991
-
(1996)
Oxford Statistical Science Series
, vol.17
-
-
Lauritzen, S.L.1
-
32
-
-
70350427989
-
Markov chains and mixing times
-
Providence, RI
-
LEVIN, D. A., PERES, Y. and WILMER, E. L. (2008). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI.
-
(2008)
Amer. Math. Soc.
-
-
Levin, D.A.1
Peres, Y.2
Wilmer, E.L.3
-
33
-
-
79955804767
-
Forest density estimation
-
MR2786914
-
LIU, H., XU, M., GU, H., GUPTA, A., LAFFERTY, J. and WASSERMAN, L. (2011). Forest density estimation. J. Mach. Learn. Res. 12 907-951. MR2786914
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 907-951
-
-
Liu, H.1
Xu, M.2
Gu, H.3
Gupta, A.4
Lafferty, J.5
Wasserman, L.6
-
34
-
-
79952370993
-
Influence maximization in social networks: An ising-model-based approach
-
LIU, S., YING, L. and SHAKKOTTAI, S. (2010). Influence maximization in social networks: An ising-model-based approach. In Proc. 48th Annual Allerton Conference on Communication, Control, and Computing.
-
(2010)
Proc. 48th Annual Allerton Conference on Communication, Control, and Computing
-
-
Liu, S.1
Ying, L.2
Shakkottai, S.3
-
35
-
-
0002493849
-
Mengerian theorems for paths of bounded length
-
MR0509677
-
LOVÁSZ, L., NEUMANN LARA, V. and PLUMMER, M. (1978). Mengerian theorems for paths of bounded length. Period. Math. Hungar. 9 269-276. MR0509677
-
(1978)
Period. Math. Hungar.
, vol.9
, pp. 269-276
-
-
Lovász, L.1
Neumann Lara, V.2
Plummer, M.3
-
36
-
-
5344271248
-
Short cycles in random regular graphs
-
Research Paper 66,(electronic). MR2097332
-
MCKAY, B. D.,WORMALD, N. C. andWYSOCKA, B. (2004). Short cycles in random regular graphs. Electron. J. Combin. 11 Research Paper 66, 12 pp. (electronic). MR2097332
-
(2004)
Electron. J. Combin.
, vol.11
, pp. 12
-
-
Mckay, B.D.1
Wormald, N.C.2
Wysocka, B.3
-
37
-
-
33747163541
-
High-dimensional graphs and variable selection with the lasso
-
MR2278363
-
MEINSHAUSEN, N. and BÜHLMANN, P. (2006). High-dimensional graphs and variable selection with the lasso. Ann. Statist. 34 1436-1462. MR2278363
-
(2006)
Ann. Statist.
, vol.34
, pp. 1436-1462
-
-
Meinshausen, N.1
Bühlmann, P.2
-
39
-
-
79952428571
-
Greedy learning of markov network structure
-
NETRAPALLI, P., BANERJEE, S., SANGHAVI, S. and SHAKKOTTAI, S. (2010). Greedy learning of Markov network structure. In Proc. 48th Annual Allerton Conference on Communication, Control and Computing.
-
(2010)
Proc. 48th Annual Allerton Conference on Communication, Control and Computing
-
-
Netrapalli, P.1
Banerjee, S.2
Sanghavi, S.3
Shakkottai, S.4
-
41
-
-
77951455815
-
High-dimensional ising model selection using -1-regularized logistic regression
-
MR2662343
-
RAVIKUMAR, P., WAINWRIGHT, M. J. and LAFFERTY, J. (2010). High-dimensional Ising model selection using -1-regularized logistic regression. Ann. Statist. 38 1287-1319. MR2662343
-
(2010)
Ann. Statist.
, vol.38
, pp. 1287-1319
-
-
Ravikumar, P.1
Wainwright, M.J.2
Lafferty, J.3
-
42
-
-
80555142374
-
High-dimensional covariance estimation by minimizing -1-penalized log-determinant divergence
-
MR2836766
-
RAVIKUMAR, P.,WAINWRIGHT, M. J., RASKUTTI, G. andYU, B. (2011). High-dimensional covariance estimation by minimizing -1-penalized log-determinant divergence. Electron. J. Stat. 5 935-980. MR2836766
-
(2011)
Electron. J. Stat.
, vol.5
, pp. 935-980
-
-
Ravikumar, P.1
Wainwright, M.J.2
Raskutti, G.3
Yu, B.4
-
45
-
-
79951910784
-
A large-deviation analysis of the maximum-likelihood learning of markov tree structures
-
MR2815845
-
TAN, V. Y. F., ANANDKUMAR, A., TONG, L. andWILLSKY, A. S. (2011). A large-deviation analysis of the maximum-likelihood learning of Markov tree structures. IEEE Trans. Inform. Theory 57 1714-1735. MR2815845
-
(2011)
IEEE Trans. Inform. Theory
, vol.57
, pp. 1714-1735
-
-
Tan, V.Y.F.1
Anandkumar, A.2
Tong, L.3
Willsky, A.S.4
-
46
-
-
77951198948
-
Learning gaussian tree models: Analysis of error exponents and extremal structures
-
MR2789417
-
TAN, V. Y. F., ANANDKUMAR, A. andWILLSKY, A. S. (2010). Learning Gaussian tree models: Analysis of error exponents and extremal structures. IEEE Trans. Signal Process. 58 2701-2714. MR2789417
-
(2010)
IEEE Trans. Signal Process.
, vol.58
, pp. 2701-2714
-
-
Tan, V.Y.F.1
Anandkumar, A.2
Willsky, A.S.3
-
47
-
-
79960151222
-
Learning high-dimensional markov forest distributions: Analysis of error rates
-
MR2813149
-
TAN, V. Y. F., ANANDKUMAR, A. andWILLSKY, A. S. (2011). Learning high-dimensional Markov forest distributions: Analysis of error rates. J. Mach. Learn. Res. 12 1617-1653. MR2813149
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 1617-1653
-
-
Tan, V.Y.F.1
Anandkumar, A.2
Willsky, A.S.3
-
48
-
-
84925642995
-
Complex social networks
-
Cambridge Univ. Press, Cambridge. MR2361122
-
VEGA-REDONDO, F. (2007). Complex Social Networks. Econometric Society Monographs 44. Cambridge Univ. Press, Cambridge. MR2361122
-
(2007)
Econometric Society Monographs
, vol.44
-
-
Vega-Redondo, F.1
-
49
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
WAINWRIGHT, M. J. and JORDAN, M. I. (2008). Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning 1 1-305.
-
(2008)
Foundations and Trends in Machine Learning
, vol.1
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
51
-
-
0032482432
-
Collective dynamics of 'small-world' networks
-
WATTS, D. J. and STROGATZ, S. H. (1998). Collective dynamics of 'small-world' networks. Nature 393 440-442.
-
(1998)
Nature
, vol.393
, pp. 440-442
-
-
Watts, D.J.1
Strogatz, S.H.2
-
52
-
-
84872082433
-
-
GRAPHICAL MODEL OF SENATE VOTING
-
GRAPHICAL MODEL OF SENATE VOTING. http://www.eecs.berkeley.edu/~elghaoui/ StatNews/ex-senate.html.
-
-
-
|