-
1
-
-
70449514560
-
A large-deviation analysis for the maximum likelihood learning of tree structures
-
Seoul, Korea Jul.
-
V. Y. F. Tan, A. Anandkumar, L. Tong, and A. S.Willsky, "A large-deviation analysis for the maximum likelihood learning of tree structures," in Proc. IEEE Int. Symp. Information Theory, Seoul, Korea, Jul. 2009, pp. 1140-1144.
-
(2009)
Proc.IEEE Int. Symp. Information Theory
, pp. 1140-1144
-
-
Tan, V.Y.F.1
Anandkumar, A.2
Tong, L.3
Willsky, A.S.4
-
2
-
-
0004047518
-
-
Oxford, U,K,: Oxford Univ. Press
-
S. Lauritzen, Graphical Models. Oxford, U,K,: Oxford Univ. Press, 1996.
-
(1996)
Graphical Models
-
-
Lauritzen, S.1
-
3
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
May
-
C. K. Chow and C. N. Liu, "Approximating discrete probability distributions with dependence trees," IEEE Trans. Inf. Theory, vol. IT-14, no. 3, pp. 462-467, May 1968.
-
(1968)
IEEE Trans. Inf. Theory
, vol.IT-14
, Issue.3
, pp. 462-467
-
-
Chow, C.K.1
Liu, C.N.2
-
5
-
-
84864034065
-
High-dimensional graphical model selection using -regularized logistic regression
-
Cambridge, MA: MIT Press
-
M. J. Wainwright, P. Ravikumar, and J. D. Lafferty, "High- dimensional graphical model selection using -regularized logistic regression," in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2006, pp. 1465-1472.
-
(2006)
Neural Information Processing Systems
, pp. 1465-1472
-
-
Wainwright, M.J.1
Ravikumar, P.2
Lafferty, J.D.3
-
8
-
-
33747163541
-
High-dimensional graphs and variable selection with the Lasso
-
DOI 10.1214/009053606000000281
-
N. Meinshausen and P. Buehlmann, "High-dimensional graphs and variable selection with the Lasso," Ann. Statist., vol. 34, no. 3, pp. 1436-1462, Jun 2006. (Pubitemid 44231168)
-
(2006)
Annals of Statistics
, vol.34
, Issue.3
, pp. 1436-1462
-
-
Meinshausen, N.1
Buhlmann, P.2
-
10
-
-
0008546324
-
Consistency of an estimate of tree-dependent probability distributions
-
May
-
C. K. Chow and T.Wagner, "Consistency of an estimate of tree-dependent probability distributions," IEEE Trans. Inf. Theory, vol. IT-19, no. 3, pp. 369-371, May 1973.
-
(1973)
IEEE Trans. Inf. Theory
, vol.IT-19
, Issue.3
, pp. 369-371
-
-
Chow, C.K.1
Wagner, T.2
-
13
-
-
0038718594
-
Information projections revisited
-
Jun.
-
I. Csiszár and F. Matúš, "Information projections revisited," IEEE Trans. Inf. Theory, vol. 49, no. 6, pp. 1474-1490, Jun. 2003.
-
(2003)
IEEE Trans. Inf. Theory
, vol.49
, Issue.6
, pp. 1474-1490
-
-
Csiszár, I.1
Matúš, F.2
-
16
-
-
64049102502
-
Learning Markov networks: Maximum bounded tree-width graphs
-
D. Karger and N. Srebro, "Learning Markov networks: Maximum bounded tree-width graphs," in Proc. Symp. Discrete Algorithms, 2001, pp. 392-401.
-
(2001)
Proc. Symp. Discrete Algorithms
, pp. 392-401
-
-
Karger, D.1
Srebro, N.2
-
18
-
-
0003846045
-
Learning Bayesian networks
-
Microsoft Research, Redmond, WA
-
D. Heckerman and D. Geiger, Learning Bayesian networks, Microsoft Research, Redmond, WA, 1994, Tech. Rep. MSR-TR-95-02.
-
(1994)
Tech. Rep. MSR-TR-95-02
-
-
Heckerman, D.1
Geiger, D.2
-
19
-
-
0000120766
-
Estimating the dimension of a model
-
G. Schwarz, "Estimating the dimension of a model," Ann. Statist., vol. 6, no. 2, pp. 461-464, 1978.
-
(1978)
Ann. Statist.
, vol.6
, Issue.2
, pp. 461-464
-
-
Schwarz, G.1
-
20
-
-
85194972808
-
Regression shrinkage and selection via the Lasso
-
R. Tibshirani, "Regression shrinkage and selection via the Lasso," J. Roy. Statist. Soc. B, vol. 58, no. 1, pp. 267-288, 1996.
-
(1996)
J. Roy. Statist. Soc. B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
22
-
-
79960117913
-
Learning latent tree graphical models
-
Sep., ArXiv: 1009.2722,submitted for publication
-
M. J. Choi, V. Y. F. Tan, A. Anandkumar, and A. S. Willsky, "Learning latent tree graphical models," J. Mach. Learn. Res., Sep. 2010, ArXiv:1009.2722, submitted for publication.
-
(2010)
J. Mach. Learn. Res.
-
-
Choi, M.J.1
Tan, V.Y.F.2
Anandkumar, A.3
Willsky, A.S.4
-
23
-
-
0041877169
-
Estimation of entropy and mutual information
-
DOI 10.1162/089976603321780272
-
L. Paninski, "Estimation of entropy and mutual information," Neural Comput., vol. 15, no. 6, pp. 1191-1253, Jun 1, 2003. (Pubitemid 37049793)
-
(2003)
Neural Computation
, vol.15
, Issue.6
, pp. 1191-1253
-
-
Paninski, L.1
-
24
-
-
0035539882
-
Convergence properties of functional estimates for discrete distributions
-
A. Antos and I. Kontoyiannis, "Convergence properties of functional estimates for discrete distributions," Random Struct. Alg., pp. 163-193, 2001.
-
(2001)
Random Struct. Alg.
, pp. 163-193
-
-
Antos, A.1
Kontoyiannis, I.2
-
25
-
-
26944447088
-
Large deviations for empirical entropies of g-measures
-
DOI 10.1088/0951-7715/18/6/007, PII S0951771505890851
-
J.-R. Chazottes and D. Gabrielli, "Large deviations for empirical entropies of g-measures," Nonlinearity, vol. 18, pp. 2545-2563, Nov. 2005. (Pubitemid 41483187)
-
(2005)
Nonlinearity
, vol.18
, Issue.6
, pp. 2545-2563
-
-
Chazottes, J.-R.1
Gabrielli, D.2
-
26
-
-
9444230823
-
Distribution of mutual information
-
Cambridge, MA: MIT Press
-
M. Hutter, "Distribution of mutual information," in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2001, pp. 399-406.
-
(2001)
Neural Information Processing Systems
, pp. 399-406
-
-
Hutter, M.1
-
27
-
-
77951198948
-
Learning Gaussian tree models: Analysis of error exponents and extremal structures
-
May
-
V. Y. F. Tan, A. Anandkumar, and A. S. Willsky, "Learning Gaussian tree models: Analysis of error exponents and extremal structures," IEEE Trans. Signal Process., vol. 58, no. 5, pp. 2701-2714, May 2010.
-
(2010)
IEEE Trans. Signal Process.
, vol.58
, Issue.5
, pp. 2701-2714
-
-
Tan, V.Y.F.1
Anandkumar, A.2
Willsky, A.S.3
-
28
-
-
0001594198
-
Large deviations of estimators
-
A. Kester and W. Kallenberg, "Large deviations of estimators," Ann. Statist., pp. 648-664, 1986.
-
(1986)
Ann. Statist.
, pp. 648-664
-
-
Kester, A.1
Kallenberg, W.2
-
29
-
-
0001799412
-
Large deviations, tests, and estimates
-
R. Bahadur, S. Zabell, and J. Gupta, "Large deviations, tests, and estimates," Asymptotic Theor. Stat. Tests Estim., pp. 33-64, 1980.
-
(1980)
Asymptotic Theor. Stat. Tests Estim.
, pp. 33-64
-
-
Bahadur, R.1
Zabell, S.2
Gupta, J.3
-
31
-
-
79951926663
-
Econometric analysis of mixed parameter models
-
K. Ryu, "Econometric analysis of mixed parameter models," J. Econ. Theor. Econ., vol. 5, no. 113-124, 1999.
-
(1999)
J. Econ. Theor. Econ.
, vol.5
, pp. 113-124
-
-
Ryu, K.1
-
32
-
-
0003462953
-
-
Hoboken, NJ: Wiley
-
H. L. V. Trees, Detection, Estimation, and Modulation Theory, Part I. Hoboken, NJ: Wiley, 1968.
-
(1968)
Detection, Estimation, and Modulation Theory, Part I
-
-
Trees, H.L.V.1
-
33
-
-
0001560954
-
Information geometry and alternating minimization procedures
-
Jul.
-
I. Csiszár and G. Tusnády, "Information geometry and alternating minimization procedures," Stat. Decisions, Supplementary, no. 1, pp. 205-237, Jul. 1984.
-
(1984)
Stat. Decisions, Supplementary
, Issue.1
, pp. 205-237
-
-
Csiszár, I.1
Tusnády, G.2
-
34
-
-
0004116989
-
-
New York: McGraw-Hill Science/Engineering/Math
-
T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed. New York: McGraw-Hill Science/Engineering/Math, 2003.
-
(2003)
Introduction to Algorithms, 2nd Ed.
-
-
Cormen, T.1
Leiserson, C.2
Rivest, R.3
Stein, C.4
-
35
-
-
70350674995
-
On the shortest spanning subtree of a graph and the traveling salesman problem
-
Feb.
-
J. B. Kruskal, "On the shortest spanning subtree of a graph and the traveling salesman problem," presented at the Amer. Math. Soc., Feb. 1956.
-
(1956)
The Amer. Math. Soc.
-
-
Kruskal, J.B.1
-
36
-
-
84911584312
-
Shortest connection networks and some generalizations
-
R. C. Prim, "Shortest connection networks and some generalizations," Bell Syst. Tech. J., vol. 36, 1957.
-
(1957)
Bell Syst. Tech. J.
, vol.36
-
-
Prim, R.C.1
-
38
-
-
77955705761
-
Learning highdimensional Markov forest distributions: Analysis of error rates
-
May , ArXiv: 1005.0766, submitted for publication
-
V. Y. F. Tan, A. Anandkumar, and A. S. Willsky, "Learning highdimensional Markov forest distributions: Analysis of error rates," J. Mach. Learning Research,May 2010, ArXiv:1005.0766, submitted for publication.
-
(2010)
J. Mach. Learning Research
-
-
Tan, V.Y.F.1
Anandkumar, A.2
Willsky, A.S.3
-
39
-
-
0001151052
-
Minimax tests and the Neyman- Pearson lemma for capacities
-
P. J. Huber and V. Strassen, "Minimax tests and the Neyman-Pearson lemma for capacities," Ann. Statist., vol. 1, pp. 251-263.
-
Ann. Statist.
, vol.1
, pp. 251-263
-
-
Huber, P.J.1
Strassen, V.2
-
40
-
-
33747217583
-
Worst-case large-deviation asymptotics with application to queueing and information theory
-
DOI 10.1016/j.spa.2005.11.003, PII S030441490500164X
-
C. Pandit and S. P. Meyn, "Worst-case large-deviations with application to queueing and information theory," Stochastic Processes Appl., vol. 116, no. 5, pp. 724-756, May 2006. (Pubitemid 44262037)
-
(2006)
Stochastic Processes and their Applications
, vol.116
, Issue.5
, pp. 724-756
-
-
Pandit, C.1
Meyn, S.2
-
41
-
-
0026117687
-
On universal hypotheses testing via large deviations
-
Mar.
-
O. Zeitouni and M. Gutman, "On universal hypotheses testing via large deviations," IEEE Trans. Inf. Theory, vol. 37, no. 2, pp. 285-290, Mar. 1991.
-
(1991)
IEEE Trans. Inf. Theory
, vol.37
, Issue.2
, pp. 285-290
-
-
Zeitouni, O.1
Gutman, M.2
-
42
-
-
79951922225
-
Universal and composite hypothesis testing via mismatched divergence
-
to be published
-
J. Unnikrishnan, D. Huang, S. Meyn, A. Surana, and V. V. Veeravalli, "Universal and composite hypothesis testing via mismatched divergence," IEEE Trans. Inf. Theory, to be published.
-
IEEE Trans. Inf. Theory
-
-
Unnikrishnan, J.1
Huang, D.2
Meyn, S.3
Surana, A.4
Veeravalli, V.V.5
-
43
-
-
77955701505
-
Error exponents for composite hypothesis testing of Markov forest distributions
-
Austin, TX, Jun.
-
V. Y. F. Tan, A. Anandkumar, and A. S.Willsky, "Error exponents for composite hypothesis testing of Markov forest distributions," in Proc. Int. Symp. Inf. Theor., Austin, TX, Jun. 2010, pp. 1613-1617.
-
(2010)
Proc. Int. Symp. Inf. Theor.
, pp. 1613-1617
-
-
Tan, V.Y.F.1
Anandkumar, A.2
Willsky, A.S.3
-
44
-
-
52349096600
-
Linear universal decoding for compound channels: An Euclidean geometric approach
-
E. Abbe and L. Zheng, "Linear universal decoding for compound channels: An Euclidean geometric approach," in Proc. Int. Symp. Inf. Theor., 2008, pp. 1098-1102.
-
(2008)
Proc. Int. Symp. Inf. Theor.
, pp. 1098-1102
-
-
Abbe, E.1
Zheng, L.2
-
48
-
-
0035397522
-
Information geometry on hierarchy of probability distributions
-
DOI 10.1109/18.930911, PII S0018944801044200
-
S.-I. Amari, "Information geometry on hierarchy of probability distributions," IEEE Trans. Inf. Theory, vol. 47, no. 5, pp. 1701-1711, Jul. 2001. (Pubitemid 32644689)
-
(2001)
IEEE Transactions on Information Theory
, vol.47
, Issue.5
, pp. 1701-1711
-
-
Amari, S.-I.1
-
49
-
-
0000429129
-
On the statistical treatment of linear stochastic difference equations
-
H. B. Mann and A. Wald, "On the statistical treatment of linear stochastic difference equations," Econometrics, vol. 11, pp. 173-220, 1943.
-
(1943)
Econometrics
, vol.11
, pp. 173-220
-
-
Mann, H.B.1
Wald, A.2
|