메뉴 건너뛰기




Volumn 1805, Issue , 2000, Pages 341-344

Robust ensemble learning for data mining

Author keywords

[No Author keywords available]

Indexed keywords

ECONOMIC AND SOCIAL EFFECTS; FILTRATION;

EID: 84869096933     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-45571-x_39     Document Type: Conference Paper
Times cited : (17)

References (11)
  • 1
    • 0003929807 scopus 로고    scopus 로고
    • Technical Report 504, Statistics Depeirtment, University of California
    • L. Breiman. Prediction games and arcing algorithms. Technical Report 504, Statistics Depeirtment, University of California, December 1997.
    • (1997) Prediction Games and Arcing Algorithms
    • Breiman, L.1
  • 3
    • 0002859310 scopus 로고
    • Learning algorithms for classification: A compaxison on handwritten digit recognition
    • Y. LeCun et al. Learning algorithms for classification: A compaxison on handwritten digit recognition. Neural Networks, pages 261-276, 1995.
    • (1995) Neural Networks , pp. 261-276
    • Lecun, Y.1
  • 4
    • 0031638384 scopus 로고    scopus 로고
    • Boosting in the hmit: Maximizing the margin of learned ensembles
    • A. Grove and D. Schuurmans. Boosting in the hmit: Maximizing the margin of learned ensembles. In Proc of the 15th Nat. Conf. on Al, pages 692-699, 1998.
    • (1998) Proc of the 15Th Nat Conf on Al , pp. 692-699
    • Grove, A.1    Schuurmans, D.2
  • 6
    • 84949196941 scopus 로고    scopus 로고
    • Boosting first-order learning (Invited lecture)
    • J. R. Quinlan. Boosting first-order learning (invited lecture). Lecture Notes in Computer Science, 1160:143, 1996.
    • (1996) Lecture Notes in Computer Science , vol.1160 , pp. 143
    • Quinlan, J.R.1
  • 7
    • 0003851811 scopus 로고    scopus 로고
    • Technical Report NC-TR-1998-021 NeuroColt, To appear in Machine Learning
    • G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Technical Report NC-TR-1998-021, NeuroColt, 1998. To appear in Machine Learning.
    • (1998) Soft Margins for Adaboost
    • Rätsch, G.1    Onoda, T.2    Müller, K.-R.3
  • 8
    • 0002829165 scopus 로고    scopus 로고
    • Robust ensemble learning
    • A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, MIT Press, Cambridge, MA
    • G. Rätsch, B. Schokopf, A. Smola, S. Mika, T. Onoda, and K.-R. Müller. Robust ensemble learning. In A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors. Advances in Large Margin Classifiers, pages 207-219. MIT Press, Cambridge, MA, 1999.
    • (1999) Advances in Large Margin Classifiers , pp. 207-219
    • Rätsch, G.1    Schokopf, B.2    Smola, A.3    Mika, S.4    Onoda, T.5    Müller, K.-R.6
  • 9
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R. Schapire, Y. Preund, P. L. Bartlett, and W. Sun Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26(5):1651-1686, 1998.
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.1    Preund, Y.2    Bartlett, P.L.3    Sun Lee, W.4
  • 11
    • 84898928884 scopus 로고    scopus 로고
    • Training methods for adaptive boosting of neural networks
    • Michael I. Jordan, Michael J. Kearns, and Sara A. SoUa, editors, The MIT Press
    • H. Schwenk and Y. Bengio. Training methods for adaptive boosting of neural networks. In Michael I. Jordan, Michael J. Kearns, and Sara A. SoUa, editors. Advances in Neural Inf. Processing Systems, volume 10. The MIT Press, 1998.
    • (1998) Advances in Neural Inf. Processing Systems , vol.10
    • Schwenk, H.1    Bengio, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.