메뉴 건너뛰기




Volumn 61, Issue 12, 2012, Pages 1467-1490

Derivative-free optimization and neural networks for robust regression

Author keywords

global optimization; least trimmed squares; neural networks; non smooth optimization; robust regression

Indexed keywords


EID: 84868710324     PISSN: 02331934     EISSN: 10294945     Source Type: Journal    
DOI: 10.1080/02331934.2012.674946     Document Type: Article
Times cited : (8)

References (61)
  • 1
    • 0036462799 scopus 로고    scopus 로고
    • A method for minimization of quasidifferentiable functions
    • Bagirov, A. 2002. A method for minimization of quasidifferentiable functions. Optim. Methods Software, 17: 31-60.
    • (2002) Optim. Methods Software , vol.17 , pp. 31-60
    • Bagirov, A.1
  • 3
    • 84861696059 scopus 로고    scopus 로고
    • Computing of high breakdown regression estimators without sorting on graphics processing units
    • Beliakov, G, Johnstone, M and Nahavandi, S. 2012. Computing of high breakdown regression estimators without sorting on graphics processing units. Computing, doi:10.1007/s00607-011-0183-7
    • (2012) Computing
    • Beliakov, G.1    Johnstone, M.2    Nahavandi, S.3
  • 4
    • 84867469138 scopus 로고    scopus 로고
    • Global non-smooth optimization in robust multivariate regression
    • Beliakov, G and Kelarev, A. 2012. Global non-smooth optimization in robust multivariate regression. Optim. Methods Software, doi:10.1080/10556788.2011.614609
    • (2012) Optim. Methods Software
    • Beliakov, G.1    Kelarev, A.2
  • 6
    • 35148860108 scopus 로고    scopus 로고
    • Implementation of novel methods of global and non-smooth optimization: GANSO programming library
    • Beliakov, G and Ugon, J. 2007. Implementation of novel methods of global and non-smooth optimization: GANSO programming library. Optimization, 56: 543-546.
    • (2007) Optimization , vol.56 , pp. 543-546
    • Beliakov, G.1    Ugon, J.2
  • 7
    • 76849091040 scopus 로고    scopus 로고
    • Tech. Rep. University of Dortmund, Available at
    • T. Bernholt, Robust estimators are hard to compute. Tech. Rep. University of Dortmund, 2005. Available athttp://www.statistik.tu-dortmund.de/fileadmin/userupload/Lehrstuehle/MSind/SFB475/2005/tr52-05.pdf
    • (2005) Robust estimators are hard to compute
    • Bernholt, T.1
  • 8
    • 78650745912 scopus 로고    scopus 로고
    • GPU-Quicksort: A practical quicksort algorithm for graphics processors
    • Cederman, D and Tsigas, P. 2009. GPU-Quicksort: A practical quicksort algorithm for graphics processors. ACM J. Exp. Algor., 14: 1.4.1-1.4.24.
    • (2009) ACM J. Exp. Algor. , vol.14 , pp. 1-24
    • Cederman, D.1    Tsigas, P.2
  • 9
    • 77952570570 scopus 로고    scopus 로고
    • Multivariate outlier detection with high-breakdown estimators
    • Cerioli, A. 2010. Multivariate outlier detection with high-breakdown estimators. J. Amer. Stat. Assoc., 105: 147-156.
    • (2010) J. Amer. Stat. Assoc. , vol.105 , pp. 147-156
    • Cerioli, A.1
  • 10
    • 0028428006 scopus 로고
    • A robust back-propagation learning algorithm for function approximation
    • Chen, DS and Jain, RC. 1994. A robust back-propagation learning algorithm for function approximation. IEEE Trans. Neural Networks, 5: 467-479.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 467-479
    • Chen, D.S.1    Jain, R.C.2
  • 11
    • 0742289150 scopus 로고    scopus 로고
    • Annealing robust radial basis function networks for function approximation with outliers
    • Chuang, C-C, Jeng, J-T and Lin, P-T. 2004. Annealing robust radial basis function networks for function approximation with outliers. Neurocomputing, 56: 123-139.
    • (2004) Neurocomputing , vol.56 , pp. 123-139
    • Chuang, C.-C.1    Jeng, J.-T.2    Lin, P.-T.3
  • 12
    • 0034271492 scopus 로고    scopus 로고
    • The annealing robust backpropagation (ARBP) learning algorithm
    • Chuang, CC, Su, SF and Hsiao, CC. 2000. The annealing robust backpropagation (ARBP) learning algorithm. IEEE Trans. Neural Networks, 11: 1067-1077.
    • (2000) IEEE Trans. Neural Networks , vol.11 , pp. 1067-1077
    • Chuang, C.C.1    Su, S.F.2    Hsiao, C.C.3
  • 13
    • 34047257199 scopus 로고    scopus 로고
    • CPBUM neural network for modeling with outliers and noise
    • Chuong, CC and Jeng, JT. 2007. CPBUM neural network for modeling with outliers and noise. Appl. Soft Comput., 7: 957-967.
    • (2007) Appl. Soft Comput. , vol.7 , pp. 957-967
    • Chuong, C.C.1    Jeng, J.T.2
  • 14
    • 65749109372 scopus 로고    scopus 로고
    • Robust training of artificial feedforward neural networks
    • In: Hassanien A., Abraham A., Vasilakos A., Pedrycz W., editors Berlin, Heidelberg, Berlin, Heidelberg,: Springer
    • El-Melegy, M, Essai, M and Ali, A. 2009. "Robust training of artificial feedforward neural networks". In Foundations of Computational Intelligence, Volume 201 of Studies in Computational Intelligence, Edited by: Hassanien, A., Abraham, A., Vasilakos, A. and Pedrycz, W. 217-242. Berlin, Heidelberg: Springer.
    • (2009) Foundations of Computational Intelligence, Volume 201 of Studies in Computational Intelligence , pp. 217-242
    • El-Melegy, M.1    Essai, M.2    Ali, A.3
  • 15
    • 0036282009 scopus 로고    scopus 로고
    • A class of robust and fully efficient regression estimators
    • Gervini, D and Yohai, VJ. 2002. A class of robust and fully efficient regression estimators. Ann. Stat., 30: 583-616.
    • (2002) Ann. Stat. , vol.30 , pp. 583-616
    • Gervini, D.1    Yohai, V.J.2
  • 16
    • 0031200989 scopus 로고    scopus 로고
    • Maximum trimmed likelihood estimators: A unified approach, examples, and algorithms
    • Hadi, AS and Luceño, A. 1997. Maximum trimmed likelihood estimators: A unified approach, examples, and algorithms. Comput. Stat. Data Anal., 25: 251-272.
    • (1997) Comput. Stat. Data Anal. , vol.25 , pp. 251-272
    • Hadi, A.S.1    Luceño, A.2
  • 17
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan, MT and Menhaj, MB. 1994. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Networks, 5: 989-993.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 18
    • 0001340473 scopus 로고
    • A general qualitative definition of robustness
    • Hampel, FR. 1971. A general qualitative definition of robustness. Ann. Math. Stat., 42: 1887-1896.
    • (1971) Ann. Math. Stat. , vol.42 , pp. 1887-1896
    • Hampel, F.R.1
  • 19
    • 0038334682 scopus 로고    scopus 로고
    • Applications and algorithms for least trimmed sum of absolute deviations regression
    • Hawkins, DM and Olive, DJ. 1999. Applications and algorithms for least trimmed sum of absolute deviations regression. Comput. Stat. Data Anal., 32: 119-134.
    • (1999) Comput. Stat. Data Anal. , vol.32 , pp. 119-134
    • Hawkins, D.M.1    Olive, D.J.2
  • 21
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K, Stinchcombe, M and White, H. 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2: 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 23
    • 0037238922 scopus 로고    scopus 로고
    • Empirical evaluation of the improved Rprop learning algorithms
    • Igel, C and Hüsken, M. 2003. Empirical evaluation of the improved Rprop learning algorithms. Neurocomputing, 50: 105-123.
    • (2003) Neurocomputing , vol.50 , pp. 105-123
    • Igel, C.1    Hüsken, M.2
  • 24
    • 0037312458 scopus 로고    scopus 로고
    • Differential evolution training algorithm for feed-forward neural networks
    • Ilonen, J, Kamarainen, J-K and Lampinen, J. 2003. Differential evolution training algorithm for feed-forward neural networks. Neural Process. Lett., 17: 93-105.
    • (2003) Neural Process. Lett. , vol.17 , pp. 93-105
    • Ilonen, J.1    Kamarainen, J.-K.2    Lampinen, J.3
  • 26
    • 0033893447 scopus 로고    scopus 로고
    • Control of magnetic bearing systems via the Chebyshev polynomial-based unified model (CPBUM) neural network
    • Jeng, JT and Lee, TT. 2000. Control of magnetic bearing systems via the Chebyshev polynomial-based unified model (CPBUM) neural network. IEEE Trans. Man Cybernetics, Part B: Cybernet., 30: 85-92.
    • (2000) IEEE Trans. Man Cybernetics, Part B: Cybernet. , vol.30 , pp. 85-92
    • Jeng, J.T.1    Lee, T.T.2
  • 28
    • 0029777584 scopus 로고    scopus 로고
    • Robust error measure for supervised neural network learning with outliers
    • Liano, K. 1996. Robust error measure for supervised neural network learning with outliers. IEEE Trans. Neural Networks, 7: 246-250.
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 246-250
    • Liano, K.1
  • 30
    • 33845307114 scopus 로고    scopus 로고
    • Dynamical systems described by relational elasticities with applications to global optimization
    • In: Rubinov A., Jeyakumar V., editors New York,: Springer
    • Mammadov, MA, Rubinov, A and Yearwood, J. 2005. "Dynamical systems described by relational elasticities with applications to global optimization". In Continuous Optimisation: Current Trends and Modern Applications, Edited by: Rubinov, A. and Jeyakumar, V. 365-385. New York: Springer.
    • (2005) Continuous Optimisation: Current Trends and Modern Applications , pp. 365-385
    • Mammadov, M.A.1    Rubinov, A.2    Yearwood, J.3
  • 31
    • 33845310880 scopus 로고    scopus 로고
    • The study of drug-reaction relationships using global optimization techniques
    • Mammadov, M, Rubinov, A and Yearwood, J. 2007. The study of drug-reaction relationships using global optimization techniques. Optim. Methods Software, 22: 99-126.
    • (2007) Optim. Methods Software , vol.22 , pp. 99-126
    • Mammadov, M.1    Rubinov, A.2    Yearwood, J.3
  • 34
    • 68949099095 scopus 로고    scopus 로고
    • Benchmarking derivative-free optimization algorithms
    • Moré, JJ and Wild, SM. 2009. Benchmarking derivative-free optimization algorithms. SIAM J. Optim., 20: 172-191.
    • (2009) SIAM J. Optim. , vol.20 , pp. 172-191
    • Moré, J.J.1    Wild, S.M.2
  • 35
    • 0000238336 scopus 로고
    • A simplex method for function minimization
    • Nelder, JA and Mead, R. 1965. A simplex method for function minimization. Comput. J., 7: 308-313.
    • (1965) Comput. J. , vol.7 , pp. 308-313
    • Nelder, J.A.1    Mead, R.2
  • 36
    • 77955405267 scopus 로고    scopus 로고
    • Outlier detection and least trimmed squares approximation using semi-definite programming
    • Nguyen, TD and Welsch, W. 2010. Outlier detection and least trimmed squares approximation using semi-definite programming. Comput. Stat. Data Anal., 12: 3212-3226.
    • (2010) Comput. Stat. Data Anal. , vol.12 , pp. 3212-3226
    • Nguyen, T.D.1    Welsch, W.2
  • 37
    • 77955371869 scopus 로고    scopus 로고
    • An evolutionary algorithm for robust regression
    • Nunkesser, R and Morell, O. 2010. An evolutionary algorithm for robust regression. Comput. Stat. Data Anal., 54: 3242-3248.
    • (2010) Comput. Stat. Data Anal. , vol.54 , pp. 3242-3248
    • Nunkesser, R.1    Morell, O.2
  • 38
    • 84868676541 scopus 로고    scopus 로고
    • NVIDIA. Available at
    • NVIDIA. Available athttp://developer.nvidia.com/object/cuda_4_0_rc_downloads.html
  • 39
    • 84868676538 scopus 로고    scopus 로고
    • NVIDIA. Tesla datasheet. Available at
    • NVIDIA. Tesla datasheet. Available athttp://www.nvidia.com/docs/io/43395/nv_ds_tesla_psc_us_nov08_lowres.pdf
  • 40
    • 84868691874 scopus 로고    scopus 로고
    • NVIDIA. Available at
    • NVIDIA. Available athttp://developer.download.nvidia.com/compute/cuda/1_1/website/dataparallelalgorithms.html
  • 41
    • 0027151141 scopus 로고
    • Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformations
    • Pati, YC and Krishnaprasad, PS. 1993. Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformations. IEEE Trans. Neural Networks, 4: 72-85.
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 72-85
    • Pati, Y.C.1    Krishnaprasad, P.S.2
  • 45
    • 0032099978 scopus 로고    scopus 로고
    • Automatic early stopping using cross validation: Quantifying the criteria
    • Prechelt, L. 1998. Automatic early stopping using cross validation: Quantifying the criteria. Neural Networks, 11: 761-767.
    • (1998) Neural Networks , vol.11 , pp. 761-767
    • Prechelt, L.1
  • 47
    • 84868698822 scopus 로고    scopus 로고
    • R software, Available at
    • R software, 2012. Available athttp://www.r-project.org/
    • (2012)
  • 48
    • 84950968334 scopus 로고
    • Least median of squares regression
    • Rousseeuw, PJ. 1984. Least median of squares regression. J. Amer. Stat. Assoc., 79: 871-880.
    • (1984) J. Amer. Stat. Assoc. , vol.79 , pp. 871-880
    • Rousseeuw, P.J.1
  • 51
    • 38049105501 scopus 로고    scopus 로고
    • Robust LTS backpropagation learning algorithm
    • In: Sandoval F., Prieto A., Cabestany J., Graãa M., editors Heidelberg, Heidelberg,: Springer, Berlin
    • Rusiecki, A. 2007. "Robust LTS backpropagation learning algorithm". In Computational and Ambient Intelligence, Volume 4507 of Lecture Notes in Computer Science, Edited by: Sandoval, F., Prieto, A., Cabestany, J. and Graãa, M. Vol. 4507, 102-109. Heidelberg: Springer, Berlin.
    • (2007) Computational and Ambient Intelligence, Volume 4507 of Lecture Notes in Computer Science , vol.4507 , pp. 102-109
    • Rusiecki, A.1
  • 52
    • 48249139546 scopus 로고    scopus 로고
    • Robust MCD-based backpropagation learning algorithm
    • In: Rutkowski L., Tadeusiewicz R., Zadeh L., Zurada J., editors Heidelberg, Heidelberg,: Springer, Berlin
    • Rusiecki, A. 2008. "Robust MCD-based backpropagation learning algorithm". In Artificial Intelligence and Soft Computing, ICAISC 2008, Volume 5097 of Lecture Notes in Computer Science, Edited by: Rutkowski, L., Tadeusiewicz, R., Zadeh, L. and Zurada, J. 154-163. Heidelberg: Springer, Berlin.
    • (2008) Artificial Intelligence and Soft Computing, ICAISC 2008, Volume 5097 of Lecture Notes in Computer Science , pp. 154-163
    • Rusiecki, A.1
  • 53
    • 73149113302 scopus 로고    scopus 로고
    • RelaxMCD: Smooth optimisation for the minimum covariance determinant estimator
    • Schyns, M, Haesbroeck, G and Critchley, F. 2010. RelaxMCD: Smooth optimisation for the minimum covariance determinant estimator. Comput. Stat. Data Anal., 54: 843-857.
    • (2010) Comput. Stat. Data Anal. , vol.54 , pp. 843-857
    • Schyns, M.1    Haesbroeck, G.2    Critchley, F.3
  • 56
    • 51449089689 scopus 로고    scopus 로고
    • Fast parallel GPU-sorting using a hybrid algorithm
    • Sintorn, E and Assarsson, U. 2008. Fast parallel GPU-sorting using a hybrid algorithm. J. Parallel Distributed Comput., 68: 1381-1388.
    • (2008) J. Parallel Distributed Comput. , vol.68 , pp. 1381-1388
    • Sintorn, E.1    Assarsson, U.2
  • 57
    • 84879910175 scopus 로고    scopus 로고
    • From regularzation operators to support vector kernels
    • Smola, AJ and Schölkopf, B. 1998. From regularzation operators to support vector kernels. Neural Inf. Process. Syst., 10: 343-349.
    • (1998) Neural Inf. Process. Syst. , vol.10 , pp. 343-349
    • Smola, A.J.1    Schölkopf, B.2
  • 58
    • 2242448153 scopus 로고    scopus 로고
    • The least trimmed differences regression estimator and alternatives
    • Stromberg, AJ, Hossjer, O and Hawkins, DM. 2000. The least trimmed differences regression estimator and alternatives. J. Amer. Stat. Assoc., 95: 853-864.
    • (2000) J. Amer. Stat. Assoc. , vol.95 , pp. 853-864
    • Stromberg, A.J.1    Hossjer, O.2    Hawkins, D.M.3
  • 60
    • 0034855365 scopus 로고    scopus 로고
    • A modified general regression neural network (MGRNN) with new, efficient training algorithms as a robust black box-tool for data analysis
    • Tomandl, D and Schober, A. 2001. A modified general regression neural network (MGRNN) with new, efficient training algorithms as a robust black box-tool for data analysis. Neural Networks, 14: 1023-1034.
    • (2001) Neural Networks , vol.14 , pp. 1023-1034
    • Tomandl, D.1    Schober, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.