메뉴 건너뛰기




Volumn 78, Issue 22, 2012, Pages 7946-7953

Characterization and two-dimensional crystallization of membrane component AlkB of the medium-chain alkane hydroxylase system from Pseudomonas putida GPo1

Author keywords

[No Author keywords available]

Indexed keywords

1-OCTYNE; ALKANE HYDROXYLASE; CATALYTIC MECHANISMS; CONTROL SAMPLES; EXPERIMENTAL EVIDENCE; HYDROXYLASES; INTEGRAL MEMBRANE; MEMBRANE COMPONENTS; MONOMERIC FORMS; MONOOXYGENASES; NEOPENTYL GLYCOL; NONHEME; OLIGOMERIC STATE; PSEUDOMONAS PUTIDA; REACTIVE CHEMICALS; REGIO-SELECTIVE; SEQUENCE SIMILARITY; SOLE SOURCE OF CARBON;

EID: 84868620051     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.02053-12     Document Type: Article
Times cited : (21)

References (37)
  • 1
    • 3843128486 scopus 로고    scopus 로고
    • Enzymatic activation of alkanes: constraints and prospective
    • Ayala M, Torres E. 2004. Enzymatic activation of alkanes: constraints and prospective. Appl. Catal. A 272:1-13.
    • (2004) Appl. Catal. A , vol.272 , pp. 1-13
    • Ayala, M.1    Torres, E.2
  • 2
    • 0034663597 scopus 로고    scopus 로고
    • Application of multiple sequence alignment profiles to improve protein secondary structure prediction
    • Cuff JA, Barton GJ. 2000. Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40: 502-511.
    • (2000) Proteins , vol.40 , pp. 502-511
    • Cuff, J.A.1    Barton, G.J.2
  • 3
    • 0023632006 scopus 로고
    • Controlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli
    • Eggink G, Lageveen RG, Altenburg B, Witholt B. 1987. Controlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli. J. Biol. Chem. 262: 17712-17718.
    • (1987) J. Biol. Chem , vol.262 , pp. 17712-17718
    • Eggink, G.1    Lageveen, R.G.2    Altenburg, B.3    Witholt, B.4
  • 4
    • 36049000626 scopus 로고    scopus 로고
    • 2dx_merge: data management and merging for 2D crystal images
    • Gipson B, Zeng X, Stahlberg H. 2007. 2dx_merge: data management and merging for 2D crystal images. J. Struct. Biol. 160:375-384.
    • (2007) J. Struct. Biol , vol.160 , pp. 375-384
    • Gipson, B.1    Zeng, X.2    Stahlberg, H.3
  • 6
    • 33644852442 scopus 로고    scopus 로고
    • Propane and n-butane oxidation by Pseudomonas putida GPo1
    • Johnson EL, Hyman MR. 2006. Propane and n-butane oxidation by Pseudomonas putida GPo1. Appl. Environ. Microbiol. 72:950-952.
    • (2006) Appl. Environ. Microbiol , vol.72 , pp. 950-952
    • Johnson, E.L.1    Hyman, M.R.2
  • 7
    • 0000333422 scopus 로고
    • Mechanistic studies on non-heme iron Monooxygenase catalysis- epoxidation, aldehyde formation, and demethylation by the omega-hydroxylation system of Pseudomonas oleovorans
    • Katopodis AG, Wimalasena K, Lee J, May SW. 1984. Mechanistic studies on non-heme iron Monooxygenase catalysis- epoxidation, aldehyde formation, and demethylation by the omega-hydroxylation system of Pseudomonas oleovorans. J. Am. Chem. Soc. 106:7928-7935.
    • (1984) J. Am. Chem. Soc , vol.106 , pp. 7928-7935
    • Katopodis, A.G.1    Wimalasena, K.2    Lee, J.3    May, S.W.4
  • 8
    • 0001184693 scopus 로고    scopus 로고
    • Electron transfer from flavin to iron in the Pseudomonas oleovorans rubredoxin reductase-rubredoxin electron transfer complex
    • Lee HJ, Basran J, Scrutton NS. 1998. Electron transfer from flavin to iron in the Pseudomonas oleovorans rubredoxin reductase-rubredoxin electron transfer complex. Biochemistry 37:15513-15522.
    • (1998) Biochemistry , vol.37 , pp. 15513-15522
    • Lee, H.J.1    Basran, J.2    Scrutton, N.S.3
  • 9
    • 0030698199 scopus 로고    scopus 로고
    • Recombinant two-iron rubredoxin of Pseudomonas oleovorans: overexpression, purification and characterization by optical CD and 113Cd NMR spectroscopies
    • Lee HJ, Lian LY, Scrutton NS. 1997. Recombinant two-iron rubredoxin of Pseudomonas oleovorans: overexpression, purification and characterization by optical, CD and 113Cd NMR spectroscopies. Biochem. J. 328: 131-136.
    • (1997) Biochem. J. , vol.328 , pp. 131-136
    • Lee, H.J.1    Lian, L.Y.2    Scrutton, N.S.3
  • 10
    • 38349124762 scopus 로고    scopus 로고
    • Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase
    • Li L, et al. 2008. Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. J. Mol. Biol. 376:453-465.
    • (2008) J. Mol. Biol , vol.376 , pp. 453-465
    • Li, L.1
  • 11
    • 15044356424 scopus 로고    scopus 로고
    • Crystal structure of a membranebound metalloenzyme that catalyses the biological oxidation of methane
    • Lieberman RL, Rosenzweig AC. 2005. Crystal structure of a membranebound metalloenzyme that catalyses the biological oxidation of methane. Nature 434:177-182.
    • (2005) Nature , vol.434 , pp. 177-182
    • Lieberman, R.L.1    Rosenzweig, A.C.2
  • 12
    • 33947235192 scopus 로고    scopus 로고
    • Comparison of methods for analyzing kinetic data from mechanism-based enzyme inactivation: application to nitric oxide synthase
    • doi:10.1208ps/020108
    • Maurer T, Fung HL. 2000. Comparison of methods for analyzing kinetic data from mechanism-based enzyme inactivation: application to nitric oxide synthase. AAPS PharmSci. 2:E8. doi:10.1208ps/020108.
    • (2000) AAPS PharmSci , vol.2
    • Maurer, T.1    Fung, H.L.2
  • 13
    • 0014939950 scopus 로고
    • Enzymatic omega-oxidation. IV. Purification and properties of the omega-hydroxylase of Pseudomonas oleovorans
    • McKenna EJ, Coon MJ. 1970. Enzymatic omega-oxidation. IV. Purification and properties of the omega-hydroxylase of Pseudomonas oleovorans. J. Biol. Chem. 245:3882-3889.
    • (1970) J. Biol. Chem , vol.245 , pp. 3882-3889
    • McKenna, E.J.1    Coon, M.J.2
  • 14
    • 0027212314 scopus 로고
    • The alkane oxidation system of Pseudomonas oleovorans: induction of the alk genes in Escherichia coli W3110 (pGEc47) affects membrane biogenesis and results in overexpression of alkane hydroxylase in a distinct cytoplasmic membrane subfraction
    • Nieboer M, Kingma J, Witholt B. 1993. The alkane oxidation system of Pseudomonas oleovorans: induction of the alk genes in Escherichia coli W3110 (pGEc47) affects membrane biogenesis and results in overexpression of alkane hydroxylase in a distinct cytoplasmic membrane subfraction. Mol. Microbiol. 8:1039-1051.
    • (1993) Mol. Microbiol , vol.8 , pp. 1039-1051
    • Nieboer, M.1    Kingma, J.2    Witholt, B.3
  • 15
    • 0035865734 scopus 로고    scopus 로고
    • Two- iron rubredoxin of Pseudomonas oleovorans: production, stability and characterization of the individual iron-binding domains by optical CD and NMR spectroscopies
    • Perry A, Lian LY, Scrutton NS. 2001. Two-iron rubredoxin of Pseudomonas oleovorans: production, stability and characterization of the individual iron-binding domains by optical, CD and NMR spectroscopies. Biochem. J. 354:89-98.
    • (2001) Biochem. J , vol.354 , pp. 89-98
    • Perry, A.1    Lian, L.Y.2    Scrutton, N.S.3
  • 16
    • 0022365236 scopus 로고
    • Acetylene as a suicide substrate and active site probe for methane monooxygenase from Methylococcus capsulatus (Bath)
    • Prior S. 1985. Acetylene as a suicide substrate and active site probe for methane monooxygenase from Methylococcus capsulatus (Bath). FEMS Microbiol. Lett. 29:105-109.
    • (1985) FEMS Microbiol. Lett , vol.29 , pp. 105-109
    • Prior, S.1
  • 18
    • 0016256836 scopus 로고
    • Identification of the omega-hydroxylase of Pseudomonas oleovorans as a nonheme iron protein requiring phospholipid for catalytic activity
    • Ruettinger RT, Olson ST, Boyer RF, Coon MJ. 1974. Identification of the omega-hydroxylase of Pseudomonas oleovorans as a nonheme iron protein requiring phospholipid for catalytic activity. Biochem. Biophys. Res. Commun. 57:1011-1017.
    • (1974) Biochem. Biophys. Res. Commun. , vol.57 , pp. 1011-1017
    • Ruettinger, R.T.1    Olson, S.T.2    Boyer, R.F.3    Coon, M.J.4
  • 19
  • 20
    • 0030611636 scopus 로고    scopus 로고
    • Mössbauer studies of alkane omega-hydroxylase: evidence for a diiron cluster in an integral-membrane enzyme
    • Shanklin J, Achim C, Schmidt H, Fox BG, Münck E. 1997. Mössbauer studies of alkane omega-hydroxylase: evidence for a diiron cluster in an integral-membrane enzyme. Proc. Natl. Acad. Sci. U. S. A. 94:2981-2986.
    • (1997) Proc. Natl. Acad. Sci. U. S. A , vol.94 , pp. 2981-2986
    • Shanklin, J.1    Achim, C.2    Schmidt, H.3    Fox, B.G.4    Münck, E.5
  • 21
    • 0038201984 scopus 로고    scopus 로고
    • Evidence linking the Pseudomonas oleovorans alkane omega-hydroxylase, an integral membrane diiron enzyme, and the fatty acid desaturase family
    • Shanklin J, Whittle E. 2003. Evidence linking the Pseudomonas oleovorans alkane omega-hydroxylase, an integral membrane diiron enzyme, and the fatty acid desaturase family. FEBS Lett. 545:188-192.
    • (2003) FEBS Lett , vol.545 , pp. 188-192
    • Shanklin, J.1    Whittle, E.2
  • 22
    • 0028930481 scopus 로고
    • Mechanism-based enzyme inactivators
    • Silverman RB. 1995. Mechanism-based enzyme inactivators. Methods in enzymology. 249:240-283.
    • (1995) Methods in enzymology , vol.249 , pp. 240-283
    • Silverman, R.B.1
  • 23
    • 0036188547 scopus 로고    scopus 로고
    • Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria
    • Smits THM, Balada SB, Witholt B, van Beilen JB. 2002. Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria. J. Bacteriol. 184:1733-1742.
    • (2002) J. Bacteriol , vol.184 , pp. 1733-1742
    • Smits, T.H.M.1    Balada, S.B.2    Witholt, B.3    van Beilen, J.B.4
  • 24
    • 0015523465 scopus 로고
    • Enzymatic oxidation VII. Reduced diphosphopyridine nucleotide-rubredoxin reductase: properties and function as an electron carrier in hydroxylation
    • Ueda T, Coon MJ. 1972. Enzymatic oxidation. VII. Reduced diphosphopyridine nucleotide-rubredoxin reductase: properties and function as an electron carrier in hydroxylation. J. Biol. Chem. 247:5010-5016.
    • (1972) J. Biol. Chem , vol.247 , pp. 5010-5016
    • Ueda, T.1    Coon, M.J.2
  • 25
    • 0028059991 scopus 로고
    • Analysis of electron microscope images and electron diffraction patterns of thin crystals of phi 29 connectors in ice
    • Valpuesta JM, Carrascosa JL, Henderson R. 1994. Analysis of electron microscope images and electron diffraction patterns of thin crystals of phi 29 connectors in ice. J. Mol. Biol. 240:281-287.
    • (1994) J. Mol. Biol , vol.240 , pp. 281-287
    • Valpuesta, J.M.1    Carrascosa, J.L.2    Henderson, R.3
  • 27
    • 0028518694 scopus 로고
    • Substrate-specificity of the alkane hydroxylase system of Pseudomonas-oleovorans GPo1
    • van Beilen J, Kingma J, Witholt B. 1994. Substrate-specificity of the alkane hydroxylase system of Pseudomonas-oleovorans GPo1. Enzyme Microb. Technol. 16:904-911.
    • (1994) Enzyme Microb. Technol. , vol.16 , pp. 904-911
    • van Beilen, J.1    Kingma, J.2    Witholt, B.3
  • 28
    • 33846621913 scopus 로고    scopus 로고
    • Alkane hydroxylases involved in microbial alkane degradation
    • van Beilen JB, Funhoff EG. 2007. Alkane hydroxylases involved in microbial alkane degradation. Appl. Microbiol. Biotechnol. 74:13-21.
    • (2007) Appl. Microbiol. Biotechnol , vol.74 , pp. 13-21
    • van Beilen, J.B.1    Funhoff, E.G.2
  • 29
    • 0026801560 scopus 로고
    • Topology of the membranebound alkane hydroxylase of Pseudomonas oleovorans
    • van Beilen JB, Penninga D, Witholt B. 1992. Topology of the membranebound alkane hydroxylase of Pseudomonas oleovorans. J. Biol. Chem. 267:9194-9201.
    • (1992) J. Biol. Chem , vol.267 , pp. 9194-9201
    • van Beilen, J.B.1    Penninga, D.2    Witholt, B.3
  • 30
    • 11144307432 scopus 로고    scopus 로고
    • Identification of an amino acid position that determines the substrate range of integral membrane alkane hydroxylases
    • van Beilen JB, et al. 2005. Identification of an amino acid position that determines the substrate range of integral membrane alkane hydroxylases. J. Bacteriol. 187:85-91.
    • (2005) J. Bacteriol , vol.187 , pp. 85-91
    • van Beilen, J.B.1
  • 31
    • 0028672044 scopus 로고
    • Genetics of alkane oxidation by Pseudomonas oleovorans
    • van Beilen JB, Wubbolts MG, Witholt B. 1994. Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 5:161-174.
    • (1994) Biodegradation , vol.5 , pp. 161-174
    • van Beilen, J.B.1    Wubbolts, M.G.2    Witholt, B.3
  • 32
    • 3242877618 scopus 로고    scopus 로고
    • DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data
    • Whitmore L, Wallace BA. 2004. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 32:W668-W673.
    • (2004) Nucleic Acids Res , vol.32
    • Whitmore, L.1    Wallace, B.A.2
  • 33
    • 45849096536 scopus 로고    scopus 로고
    • Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases
    • Whitmore L, Wallace BA. 2008. Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392-400.
    • (2008) Biopolymers , vol.89 , pp. 392-400
    • Whitmore, L.1    Wallace, B.A.2
  • 34
    • 0036342960 scopus 로고    scopus 로고
    • Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils
    • Whyte LG, et al. 2002. Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol. Ecol. 41:141-150.
    • (2002) FEMS Microbiol. Ecol , vol.41 , pp. 141-150
    • Whyte, L.G.1
  • 35
    • 81355138850 scopus 로고    scopus 로고
    • An improved procedure for the purification of catalytically active alkane hydroxylase from Pseudomonas putida GPo1
    • Xie M, Alonso H, Roujeinikova A. 2011. An improved procedure for the purification of catalytically active alkane hydroxylase from Pseudomonas putida GPo1. Appl. Biochem. Biotechnol. 165:823-831.
    • (2011) Appl. Biochem. Biotechnol , vol.165 , pp. 823-831
    • Xie, M.1    Alonso, H.2    Roujeinikova, A.3
  • 36
    • 0032974706 scopus 로고    scopus 로고
    • Inactivation of toluene 2-monooxygenase in Burkholderia cepacia G4 by alkynes
    • Yeager CM, Bottomley PJ, Arp DJ, Hyman MR. 1999. Inactivation of toluene 2-monooxygenase in Burkholderia cepacia G4 by alkynes. Appl. Environ. Microbiol. 65:632-639.
    • (1999) Appl. Environ. Microbiol , vol.65 , pp. 632-639
    • Yeager, C.M.1    Bottomley, P.J.2    Arp, D.J.3    Hyman, M.R.4
  • 37
    • 0030067648 scopus 로고    scopus 로고
    • Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath)
    • Zahn JA, DiSpirito AA. 1996. Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath). J. Bacteriol. 178:1018-1029.
    • (1996) J. Bacteriol , vol.178 , pp. 1018-1029
    • Zahn, J.A.1    DiSpirito, A.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.