-
1
-
-
84868618053
-
-
Wiener-Hammerstein benchmark, in: 15th IFAC Symposium on System Identification
-
J. Schoukens, J. Suykens, L. Ljung, Wiener-Hammerstein benchmark, in: 15th IFAC Symposium on System Identification, 2009, pp. 1086-1091.
-
(2009)
, pp. 1086-1091
-
-
Schoukens, J.1
Suykens, J.2
Ljung, L.3
-
3
-
-
46749118321
-
Nonlinear system identification using Wiener type Laguerre-wavelet network model
-
Aadaleesan P., Miglan N., Sharma R., Saha P. Nonlinear system identification using Wiener type Laguerre-wavelet network model. Chem. Eng. Sci. 2008, 63(15):3932-3941. 10.1016/j.ces.2008.04.043.
-
(2008)
Chem. Eng. Sci.
, vol.63
, Issue.15
, pp. 3932-3941
-
-
Aadaleesan, P.1
Miglan, N.2
Sharma, R.3
Saha, P.4
-
4
-
-
67651030437
-
Nonlinear identification using a b-spline neural network and chaotic immune approaches
-
Coelho L., Wicthoff M. Nonlinear identification using a b-spline neural network and chaotic immune approaches. Mech. Syst. signal Process. 2009, 23(8):2418-2434. 10.1016/j.ymssp.2009.01.013.
-
(2009)
Mech. Syst. signal Process.
, vol.23
, Issue.8
, pp. 2418-2434
-
-
Coelho, L.1
Wicthoff, M.2
-
5
-
-
84864699504
-
An interdisciplinary overview and intelligent control of human prosthetic eye movements system for the emotional support by a huggable pet-type robot from a biomechatronical viewpoint
-
〈10.1016/j.jfranklin.2011.04.014〉
-
Farivar Faezeh, Shoorehdeli Mahdi Aliyari, Teshnehlab Mohammad An interdisciplinary overview and intelligent control of human prosthetic eye movements system for the emotional support by a huggable pet-type robot from a biomechatronical viewpoint. J. Franklin Inst. 2012, 349(7):2243-2267. 〈10.1016/j.jfranklin.2011.04.014〉.
-
(2012)
J. Franklin Inst.
, vol.349
, Issue.7
, pp. 2243-2267
-
-
Farivar, F.1
Shoorehdeli, M.A.2
Teshnehlab, M.3
-
6
-
-
0003574105
-
-
Springer-Verlag, London, Berlin, Heidelberg, Great Britain
-
Noorgard M., Ravn O., Poulsen N.K., Hansen L.K. Neural Networks for Modelling and Control of Dynamic Systems 2000, Springer-Verlag, London, Berlin, Heidelberg, Great Britain. 1st ed.
-
(2000)
Neural Networks for Modelling and Control of Dynamic Systems
-
-
Noorgard, M.1
Ravn, O.2
Poulsen, N.K.3
Hansen, L.K.4
-
7
-
-
0025399567
-
Identification and control of dynamical systems using neural networks
-
Narendra K., Parthasarathy K. Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Networks 1990, 1:4-27.
-
(1990)
IEEE Trans. Neural Networks
, vol.1
, pp. 4-27
-
-
Narendra, K.1
Parthasarathy, K.2
-
8
-
-
67649637539
-
Modeling and control of nonlinear discrete-time systems based on compound neural networks
-
Yan Z., Xiuxia L., Peng Y., Zengqiang C., Zhuzhi Y. Modeling and control of nonlinear discrete-time systems based on compound neural networks. Chin. J. Chem. Eng. 2009, 17(3):454-459. 10.1016/S1004-9541(08)60230-X.
-
(2009)
Chin. J. Chem. Eng.
, vol.17
, Issue.3
, pp. 454-459
-
-
Yan, Z.1
Xiuxia, L.2
Peng, Y.3
Zengqiang, C.4
Zhuzhi, Y.5
-
9
-
-
79960126770
-
Adaptive neural network decentralized backstepping output-feedback control for nonlinear large-scale systems with time delays
-
Tong S.C., Li Y.M., Zhang H.G. Adaptive neural network decentralized backstepping output-feedback control for nonlinear large-scale systems with time delays. IEEE Trans. Neural Networks 2011, 22(7):1073-1086.
-
(2011)
IEEE Trans. Neural Networks
, vol.22
, Issue.7
, pp. 1073-1086
-
-
Tong, S.C.1
Li, Y.M.2
Zhang, H.G.3
-
10
-
-
70350047138
-
A combined backstepping and small-gain approach to robust adaptive fuzzy output feedback control
-
Tong S.C., He X.L., Zhang H.G. A combined backstepping and small-gain approach to robust adaptive fuzzy output feedback control. IEEE Trans. Fuzzy Syst. 2009, 17(5):1059-1069.
-
(2009)
IEEE Trans. Fuzzy Syst.
, vol.17
, Issue.5
, pp. 1059-1069
-
-
Tong, S.C.1
He, X.L.2
Zhang, H.G.3
-
12
-
-
84892312911
-
-
Springer Verlag, Berlin, Heidelberg
-
Isermann R., Munchhof M. Identification of Dynamic Systems, An Introduction with Applications 2011, Springer Verlag, Berlin, Heidelberg.
-
(2011)
Identification of Dynamic Systems, An Introduction with Applications
-
-
Isermann, R.1
Munchhof, M.2
-
13
-
-
50249120636
-
Nonlinear system identification and fault detection using hierarchical clustering analysis and local linear models
-
Athens, Greece
-
Xudong Wang, V.L. Syrmos, Nonlinear system identification and fault detection using hierarchical clustering analysis and local linear models, in: Proceedings of the MED '07. Mediterranean Conference on Control & Automation. Athens, Greece, 2007, http://dx.doi.org/10.1109/MED.2007.4433938.
-
(2007)
in: Proceedings of the MED '07. Mediterranean Conference on Control & Automation.
-
-
Wang, X.1
Syrmos, V.L.2
-
14
-
-
84868618055
-
-
Process, Modeling, Simulation and Control for Chemical Engineers, McGraw Hill Chemical Engineering Series, 2nd edition
-
W. Luyben, Process, Modeling, Simulation and Control for Chemical Engineers, McGraw Hill Chemical Engineering Series, 2nd edition, 1996.
-
(1996)
-
-
Luyben, W.1
-
15
-
-
80052934366
-
Nonlinear systems identification using dynamic multi-time scale neural networks
-
Han X., Xie W., Fu Z., Luo W. Nonlinear systems identification using dynamic multi-time scale neural networks. Neurocomputing 2011, 74(17):3428-3439.
-
(2011)
Neurocomputing
, vol.74
, Issue.17
, pp. 3428-3439
-
-
Han, X.1
Xie, W.2
Fu, Z.3
Luo, W.4
-
16
-
-
70349295227
-
Black-box model identification for a continuously variable, electro-hydraulic semi-active damper
-
Witters M., Swevers J. Black-box model identification for a continuously variable, electro-hydraulic semi-active damper. Mech. Syst. Signal Process. 2010, 24(1):4-18. 10.1016/j.ymssp.2009.03.013.
-
(2010)
Mech. Syst. Signal Process.
, vol.24
, Issue.1
, pp. 4-18
-
-
Witters, M.1
Swevers, J.2
-
17
-
-
84868618057
-
Identification of a Wiener-Hammerstein system using the polynomial nonlinear state space approach
-
Paduart Johan, Lauwers,Lieve, Pintelon Rik, Schoukens Johan, Identification of a Wiener-Hammerstein system using the polynomial nonlinear state space approach, in: Proceedings of the 15th IFAC Symposium on System Identification, Saint-Malo, France, 2009, http://dx.doi.org/10.3182/20090706-3-FR-2004.00179.
-
(2009)
in: Proceedings of the 15th IFAC Symposium on System Identification, Saint-Malo, France
-
-
Johan, P.1
Lieve, L.2
Rik, P.3
Johan, S.4
-
18
-
-
84875062227
-
Artificial neural network to predict the effect of heat treatments on Vickers microhardness of low-carbon nb microalloyed steels
-
G. Khalaj, H. Yoozbashizadeh, A. Khodabandeh, A. Nazari, Artificial neural network to predict the effect of heat treatments on Vickers microhardness of low-carbon nb microalloyed steels, Neural Comput. Appl. (2011) 1-10, http://dx.doi.org/10.1007/s00521-011-0779-z.
-
(2011)
Neural Comput. Appl.
, pp. 1-10
-
-
Khalaj, G.1
Yoozbashizadeh, H.2
Khodabandeh, A.3
Nazari, A.4
-
19
-
-
0003808318
-
-
Springer-Verlag, Berlin, Heidelberg New York, Germany
-
Nelles O. Nonlinear System Identification 2001, Springer-Verlag, Berlin, Heidelberg New York, Germany.
-
(2001)
Nonlinear System Identification
-
-
Nelles, O.1
-
20
-
-
84868620759
-
-
Neural Networks for Optimization and Signal Processing, 1st edition, John Wiley and Sons Ltd, Baffins Lane, Chichester, West Sussex, England
-
A. Cichocki, R. Unbehauen, Neural Networks for Optimization and Signal Processing, 1st edition, John Wiley and Sons Ltd, Baffins Lane, Chichester, West Sussex, England, 1993.
-
(1993)
-
-
Cichocki, A.1
Unbehauen, R.2
-
22
-
-
0004259250
-
-
Institute of Physics Publishing and Oxford University Press, New York
-
Fieser E., Beale R. Handbook of Neural Computation 1997, Institute of Physics Publishing and Oxford University Press, New York.
-
(1997)
Handbook of Neural Computation
-
-
Fieser, E.1
Beale, R.2
-
23
-
-
0030104078
-
Neural networks in computational science and engineering
-
Cybenko G. Neural networks in computational science and engineering. IEEE Comput. Sci. Eng. 1996, 3:36-42.
-
(1996)
IEEE Comput. Sci. Eng.
, vol.3
, pp. 36-42
-
-
Cybenko, G.1
-
24
-
-
78649472083
-
Identification and control of nonlinear systems by a time-delay recurrent neural network
-
Ge H., Du W., Qian F., Liang Y. Identification and control of nonlinear systems by a time-delay recurrent neural network. Neurocomputing 2009, 72:2857-2864. 10.1016/j.neucom.2008.06.030.
-
(2009)
Neurocomputing
, vol.72
, pp. 2857-2864
-
-
Ge, H.1
Du, W.2
Qian, F.3
Liang, Y.4
-
25
-
-
77955420136
-
Design of fuzzy wavelet neural networks using the ga approach for function approximation and system identification
-
Tzeng S. Design of fuzzy wavelet neural networks using the ga approach for function approximation and system identification. Fuzzy Sets Syst. 2010, 161(19):2585-2596. 10.1016/j.fss.2010.06.002.
-
(2010)
Fuzzy Sets Syst.
, vol.161
, Issue.19
, pp. 2585-2596
-
-
Tzeng, S.1
-
26
-
-
77957914596
-
A differential evolution based neural network approach to nonlinear system identification
-
Subudhi B., Jenab D. A differential evolution based neural network approach to nonlinear system identification. Appl. Soft Comput. 2011, 11(1):861-871. 10.1016/j.asoc.2010.01.006.
-
(2011)
Appl. Soft Comput.
, vol.11
, Issue.1
, pp. 861-871
-
-
Subudhi, B.1
Jenab, D.2
-
27
-
-
79952763605
-
Nonlinear system identification using optimized dynamic neural network
-
Xie W., Zhu Y., Zhao Z., Wong Y. Nonlinear system identification using optimized dynamic neural network. Neurocomputing 2009, 72(13-15):3277-3287. 10.1016/j.neucom.2009.02.004.
-
(2009)
Neurocomputing
, vol.72
, Issue.13-15
, pp. 3277-3287
-
-
Xie, W.1
Zhu, Y.2
Zhao, Z.3
Wong, Y.4
-
28
-
-
79952008441
-
Reducing network and computation complexities in neural based real-time scheduling scheme
-
Chen R. Reducing network and computation complexities in neural based real-time scheduling scheme. Appl. Math. Comput. 2011, 217(13):6379-6389. 10.1016/j.amc.2011.01.014.
-
(2011)
Appl. Math. Comput.
, vol.217
, Issue.13
, pp. 6379-6389
-
-
Chen, R.1
-
29
-
-
50249163291
-
Simple adaptive control for SISO nonlinear systems using multiple neural networks
-
M. Yasser, A. Trisanto, A. Haggag, T. Yahagi, H. Sekiya, Jianming Lu, Simple adaptive control for SISO nonlinear systems using multiple neural networks, in: Proceedings of the SICE, 2007 Annual Conference, Takamatsu, Japan, 2007, http://dx.doi.org/10.1109/SICE.2007.4421182.
-
(2007)
in: Proceedings of the SICE, 2007 Annual Conference, Takamatsu, Japan
-
-
Yasser, M.1
Trisanto, A.2
Haggag, A.3
Yahagi, T.4
Sekiya, H.5
Lu, J.6
-
30
-
-
0028516118
-
Feed-forward neural networks: Why network size is so important
-
Bebis G., Georgiopoulos M. Feed-forward neural networks: Why network size is so important. IEEE Potentials 1994, 13(4):27-31.
-
(1994)
IEEE Potentials
, vol.13
, Issue.4
, pp. 27-31
-
-
Bebis, G.1
Georgiopoulos, M.2
-
31
-
-
84865646918
-
Structure optimization of neural network for dynamic system modeling using multi-objective genetic algorithm
-
S. Loghmanian, H. Jamaluddin, R. Ahmad, R. Yusof, M. Khalid, Structure optimization of neural network for dynamic system modeling using multi-objective genetic algorithm, Neural Comput. Appl. (2011) 1-15.
-
(2011)
Neural Comput. Appl.
, pp. 1-15
-
-
Loghmanian, S.1
Jamaluddin, H.2
Ahmad, R.3
Yusof, R.4
Khalid, M.5
-
32
-
-
0027662338
-
Pruning algorithms-a survey
-
Reed R. Pruning algorithms-a survey. IEEE Trans. Neural Networks 1993, 4(5):740-747.
-
(1993)
IEEE Trans. Neural Networks
, vol.4
, Issue.5
, pp. 740-747
-
-
Reed, R.1
-
33
-
-
78649288454
-
A node pruning algorithm for feedforward neural network based on neural complexity
-
Intelligent Control and Information Processing (ICICIP), Dalian, China
-
Zhaozhao Zhang, Junfei Qiao, A node pruning algorithm for feedforward neural network based on neural complexity, in: Proceedings of the 2010 International Conference on, Intelligent Control and Information Processing (ICICIP), Dalian, China, 2010, http://dx.doi.org/10.1109/ICICIP.2010.5564272.
-
(2010)
in: Proceedings of the 2010 International Conference on
-
-
Zhang, Z.1
Qiao, J.2
-
34
-
-
33745442476
-
Genetic optimization-driven multi-layer hybrid fuzzy neural networks
-
Oh S.-K., Pedrycz W. Genetic optimization-driven multi-layer hybrid fuzzy neural networks. Simulation Modelling Pract. Theory 2006, 14(5):597-613. 10.1016/j.simpat.2005.10.009.
-
(2006)
Simulation Modelling Pract. Theory
, vol.14
, Issue.5
, pp. 597-613
-
-
Oh, S.-K.1
Pedrycz, W.2
-
35
-
-
43649086353
-
Identification and control of nonlinear systems by a dissimilation particle swarm optimization-based Elman neural network
-
Ge H., Qian F., Liang Y., Du W., Wang L. Identification and control of nonlinear systems by a dissimilation particle swarm optimization-based Elman neural network. Nonlinear Anal. Real World Appl. 2008, 9(4):1345-1360. 10.1016/j.nonrwa.2007.03.008.
-
(2008)
Nonlinear Anal. Real World Appl.
, vol.9
, Issue.4
, pp. 1345-1360
-
-
Ge, H.1
Qian, F.2
Liang, Y.3
Du, W.4
Wang, L.5
-
36
-
-
52149112310
-
Hybrid multiobjective evolutionary design for artificial neural networks
-
Goh C.K., Teoh E.J., Tan K.C. Hybrid multiobjective evolutionary design for artificial neural networks. IEEE Trans. Neural Networks 2008, 19(9):1531-1548.
-
(2008)
IEEE Trans. Neural Networks
, vol.19
, Issue.9
, pp. 1531-1548
-
-
Goh, C.K.1
Teoh, E.J.2
Tan, K.C.3
-
37
-
-
77956616279
-
Robust identification of nonlinear complex systems using low complexity and particle swarm optimization technique
-
Majhi B., Panda G. Robust identification of nonlinear complex systems using low complexity and particle swarm optimization technique. Expert Syst. Appl. 2011, 38(1):321-333. 10.1016/j.eswa.2010.06.070.
-
(2011)
Expert Syst. Appl.
, vol.38
, Issue.1
, pp. 321-333
-
-
Majhi, B.1
Panda, G.2
-
38
-
-
84857239400
-
Neural networks applied in chemistry i determination of the optimal topology of multilayer perceptron neural networks
-
Curteanu S., Cartwright H. Neural networks applied in chemistry i determination of the optimal topology of multilayer perceptron neural networks. J. Chemometrics 2011, 25:527-549. 10.1002/cem.1401.
-
(2011)
J. Chemometrics
, vol.25
, pp. 527-549
-
-
Curteanu, S.1
Cartwright, H.2
-
39
-
-
33750311824
-
Multiple recurrent neural networks for stable adaptive control
-
Yu W. Multiple recurrent neural networks for stable adaptive control. Neurocomputing 2006, 70(1-3):430-444. 10.1016/j.neucom.2005.12.122.
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 430-444
-
-
Yu, W.1
|