메뉴 건너뛰기




Volumn 101, Issue , 2013, Pages 170-180

Neural network design and model reduction approach for black box nonlinear system identification with reduced number of parameters

Author keywords

Black box; Model reduction; Neural Networks; Nonlinear system identification

Indexed keywords

ACTIVATION FUNCTIONS; BLACK BOXES; INITIAL CONDITIONS; MODEL REDUCTION; NEURAL NETWORK DESIGNS; NON-LINEAR SYSTEM IDENTIFICATION; PROPOSED ARCHITECTURES; SYNAPTIC WEIGHT; TRAINING PHASE; WIENER-HAMMERSTEIN;

EID: 84868619288     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.08.013     Document Type: Article
Times cited : (44)

References (39)
  • 1
    • 84868618053 scopus 로고    scopus 로고
    • Wiener-Hammerstein benchmark, in: 15th IFAC Symposium on System Identification
    • J. Schoukens, J. Suykens, L. Ljung, Wiener-Hammerstein benchmark, in: 15th IFAC Symposium on System Identification, 2009, pp. 1086-1091.
    • (2009) , pp. 1086-1091
    • Schoukens, J.1    Suykens, J.2    Ljung, L.3
  • 3
    • 46749118321 scopus 로고    scopus 로고
    • Nonlinear system identification using Wiener type Laguerre-wavelet network model
    • Aadaleesan P., Miglan N., Sharma R., Saha P. Nonlinear system identification using Wiener type Laguerre-wavelet network model. Chem. Eng. Sci. 2008, 63(15):3932-3941. 10.1016/j.ces.2008.04.043.
    • (2008) Chem. Eng. Sci. , vol.63 , Issue.15 , pp. 3932-3941
    • Aadaleesan, P.1    Miglan, N.2    Sharma, R.3    Saha, P.4
  • 4
    • 67651030437 scopus 로고    scopus 로고
    • Nonlinear identification using a b-spline neural network and chaotic immune approaches
    • Coelho L., Wicthoff M. Nonlinear identification using a b-spline neural network and chaotic immune approaches. Mech. Syst. signal Process. 2009, 23(8):2418-2434. 10.1016/j.ymssp.2009.01.013.
    • (2009) Mech. Syst. signal Process. , vol.23 , Issue.8 , pp. 2418-2434
    • Coelho, L.1    Wicthoff, M.2
  • 5
    • 84864699504 scopus 로고    scopus 로고
    • An interdisciplinary overview and intelligent control of human prosthetic eye movements system for the emotional support by a huggable pet-type robot from a biomechatronical viewpoint
    • 〈10.1016/j.jfranklin.2011.04.014〉
    • Farivar Faezeh, Shoorehdeli Mahdi Aliyari, Teshnehlab Mohammad An interdisciplinary overview and intelligent control of human prosthetic eye movements system for the emotional support by a huggable pet-type robot from a biomechatronical viewpoint. J. Franklin Inst. 2012, 349(7):2243-2267. 〈10.1016/j.jfranklin.2011.04.014〉.
    • (2012) J. Franklin Inst. , vol.349 , Issue.7 , pp. 2243-2267
    • Farivar, F.1    Shoorehdeli, M.A.2    Teshnehlab, M.3
  • 7
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • Narendra K., Parthasarathy K. Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Networks 1990, 1:4-27.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 4-27
    • Narendra, K.1    Parthasarathy, K.2
  • 8
    • 67649637539 scopus 로고    scopus 로고
    • Modeling and control of nonlinear discrete-time systems based on compound neural networks
    • Yan Z., Xiuxia L., Peng Y., Zengqiang C., Zhuzhi Y. Modeling and control of nonlinear discrete-time systems based on compound neural networks. Chin. J. Chem. Eng. 2009, 17(3):454-459. 10.1016/S1004-9541(08)60230-X.
    • (2009) Chin. J. Chem. Eng. , vol.17 , Issue.3 , pp. 454-459
    • Yan, Z.1    Xiuxia, L.2    Peng, Y.3    Zengqiang, C.4    Zhuzhi, Y.5
  • 9
    • 79960126770 scopus 로고    scopus 로고
    • Adaptive neural network decentralized backstepping output-feedback control for nonlinear large-scale systems with time delays
    • Tong S.C., Li Y.M., Zhang H.G. Adaptive neural network decentralized backstepping output-feedback control for nonlinear large-scale systems with time delays. IEEE Trans. Neural Networks 2011, 22(7):1073-1086.
    • (2011) IEEE Trans. Neural Networks , vol.22 , Issue.7 , pp. 1073-1086
    • Tong, S.C.1    Li, Y.M.2    Zhang, H.G.3
  • 10
    • 70350047138 scopus 로고    scopus 로고
    • A combined backstepping and small-gain approach to robust adaptive fuzzy output feedback control
    • Tong S.C., He X.L., Zhang H.G. A combined backstepping and small-gain approach to robust adaptive fuzzy output feedback control. IEEE Trans. Fuzzy Syst. 2009, 17(5):1059-1069.
    • (2009) IEEE Trans. Fuzzy Syst. , vol.17 , Issue.5 , pp. 1059-1069
    • Tong, S.C.1    He, X.L.2    Zhang, H.G.3
  • 13
    • 50249120636 scopus 로고    scopus 로고
    • Nonlinear system identification and fault detection using hierarchical clustering analysis and local linear models
    • Athens, Greece
    • Xudong Wang, V.L. Syrmos, Nonlinear system identification and fault detection using hierarchical clustering analysis and local linear models, in: Proceedings of the MED '07. Mediterranean Conference on Control & Automation. Athens, Greece, 2007, http://dx.doi.org/10.1109/MED.2007.4433938.
    • (2007) in: Proceedings of the MED '07. Mediterranean Conference on Control & Automation.
    • Wang, X.1    Syrmos, V.L.2
  • 14
    • 84868618055 scopus 로고    scopus 로고
    • Process, Modeling, Simulation and Control for Chemical Engineers, McGraw Hill Chemical Engineering Series, 2nd edition
    • W. Luyben, Process, Modeling, Simulation and Control for Chemical Engineers, McGraw Hill Chemical Engineering Series, 2nd edition, 1996.
    • (1996)
    • Luyben, W.1
  • 15
    • 80052934366 scopus 로고    scopus 로고
    • Nonlinear systems identification using dynamic multi-time scale neural networks
    • Han X., Xie W., Fu Z., Luo W. Nonlinear systems identification using dynamic multi-time scale neural networks. Neurocomputing 2011, 74(17):3428-3439.
    • (2011) Neurocomputing , vol.74 , Issue.17 , pp. 3428-3439
    • Han, X.1    Xie, W.2    Fu, Z.3    Luo, W.4
  • 16
    • 70349295227 scopus 로고    scopus 로고
    • Black-box model identification for a continuously variable, electro-hydraulic semi-active damper
    • Witters M., Swevers J. Black-box model identification for a continuously variable, electro-hydraulic semi-active damper. Mech. Syst. Signal Process. 2010, 24(1):4-18. 10.1016/j.ymssp.2009.03.013.
    • (2010) Mech. Syst. Signal Process. , vol.24 , Issue.1 , pp. 4-18
    • Witters, M.1    Swevers, J.2
  • 18
    • 84875062227 scopus 로고    scopus 로고
    • Artificial neural network to predict the effect of heat treatments on Vickers microhardness of low-carbon nb microalloyed steels
    • G. Khalaj, H. Yoozbashizadeh, A. Khodabandeh, A. Nazari, Artificial neural network to predict the effect of heat treatments on Vickers microhardness of low-carbon nb microalloyed steels, Neural Comput. Appl. (2011) 1-10, http://dx.doi.org/10.1007/s00521-011-0779-z.
    • (2011) Neural Comput. Appl. , pp. 1-10
    • Khalaj, G.1    Yoozbashizadeh, H.2    Khodabandeh, A.3    Nazari, A.4
  • 19
    • 0003808318 scopus 로고    scopus 로고
    • Springer-Verlag, Berlin, Heidelberg New York, Germany
    • Nelles O. Nonlinear System Identification 2001, Springer-Verlag, Berlin, Heidelberg New York, Germany.
    • (2001) Nonlinear System Identification
    • Nelles, O.1
  • 20
    • 84868620759 scopus 로고
    • Neural Networks for Optimization and Signal Processing, 1st edition, John Wiley and Sons Ltd, Baffins Lane, Chichester, West Sussex, England
    • A. Cichocki, R. Unbehauen, Neural Networks for Optimization and Signal Processing, 1st edition, John Wiley and Sons Ltd, Baffins Lane, Chichester, West Sussex, England, 1993.
    • (1993)
    • Cichocki, A.1    Unbehauen, R.2
  • 22
    • 0004259250 scopus 로고    scopus 로고
    • Institute of Physics Publishing and Oxford University Press, New York
    • Fieser E., Beale R. Handbook of Neural Computation 1997, Institute of Physics Publishing and Oxford University Press, New York.
    • (1997) Handbook of Neural Computation
    • Fieser, E.1    Beale, R.2
  • 23
    • 0030104078 scopus 로고    scopus 로고
    • Neural networks in computational science and engineering
    • Cybenko G. Neural networks in computational science and engineering. IEEE Comput. Sci. Eng. 1996, 3:36-42.
    • (1996) IEEE Comput. Sci. Eng. , vol.3 , pp. 36-42
    • Cybenko, G.1
  • 24
    • 78649472083 scopus 로고    scopus 로고
    • Identification and control of nonlinear systems by a time-delay recurrent neural network
    • Ge H., Du W., Qian F., Liang Y. Identification and control of nonlinear systems by a time-delay recurrent neural network. Neurocomputing 2009, 72:2857-2864. 10.1016/j.neucom.2008.06.030.
    • (2009) Neurocomputing , vol.72 , pp. 2857-2864
    • Ge, H.1    Du, W.2    Qian, F.3    Liang, Y.4
  • 25
    • 77955420136 scopus 로고    scopus 로고
    • Design of fuzzy wavelet neural networks using the ga approach for function approximation and system identification
    • Tzeng S. Design of fuzzy wavelet neural networks using the ga approach for function approximation and system identification. Fuzzy Sets Syst. 2010, 161(19):2585-2596. 10.1016/j.fss.2010.06.002.
    • (2010) Fuzzy Sets Syst. , vol.161 , Issue.19 , pp. 2585-2596
    • Tzeng, S.1
  • 26
    • 77957914596 scopus 로고    scopus 로고
    • A differential evolution based neural network approach to nonlinear system identification
    • Subudhi B., Jenab D. A differential evolution based neural network approach to nonlinear system identification. Appl. Soft Comput. 2011, 11(1):861-871. 10.1016/j.asoc.2010.01.006.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.1 , pp. 861-871
    • Subudhi, B.1    Jenab, D.2
  • 27
    • 79952763605 scopus 로고    scopus 로고
    • Nonlinear system identification using optimized dynamic neural network
    • Xie W., Zhu Y., Zhao Z., Wong Y. Nonlinear system identification using optimized dynamic neural network. Neurocomputing 2009, 72(13-15):3277-3287. 10.1016/j.neucom.2009.02.004.
    • (2009) Neurocomputing , vol.72 , Issue.13-15 , pp. 3277-3287
    • Xie, W.1    Zhu, Y.2    Zhao, Z.3    Wong, Y.4
  • 28
    • 79952008441 scopus 로고    scopus 로고
    • Reducing network and computation complexities in neural based real-time scheduling scheme
    • Chen R. Reducing network and computation complexities in neural based real-time scheduling scheme. Appl. Math. Comput. 2011, 217(13):6379-6389. 10.1016/j.amc.2011.01.014.
    • (2011) Appl. Math. Comput. , vol.217 , Issue.13 , pp. 6379-6389
    • Chen, R.1
  • 30
    • 0028516118 scopus 로고
    • Feed-forward neural networks: Why network size is so important
    • Bebis G., Georgiopoulos M. Feed-forward neural networks: Why network size is so important. IEEE Potentials 1994, 13(4):27-31.
    • (1994) IEEE Potentials , vol.13 , Issue.4 , pp. 27-31
    • Bebis, G.1    Georgiopoulos, M.2
  • 31
    • 84865646918 scopus 로고    scopus 로고
    • Structure optimization of neural network for dynamic system modeling using multi-objective genetic algorithm
    • S. Loghmanian, H. Jamaluddin, R. Ahmad, R. Yusof, M. Khalid, Structure optimization of neural network for dynamic system modeling using multi-objective genetic algorithm, Neural Comput. Appl. (2011) 1-15.
    • (2011) Neural Comput. Appl. , pp. 1-15
    • Loghmanian, S.1    Jamaluddin, H.2    Ahmad, R.3    Yusof, R.4    Khalid, M.5
  • 32
    • 0027662338 scopus 로고
    • Pruning algorithms-a survey
    • Reed R. Pruning algorithms-a survey. IEEE Trans. Neural Networks 1993, 4(5):740-747.
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.5 , pp. 740-747
    • Reed, R.1
  • 33
    • 78649288454 scopus 로고    scopus 로고
    • A node pruning algorithm for feedforward neural network based on neural complexity
    • Intelligent Control and Information Processing (ICICIP), Dalian, China
    • Zhaozhao Zhang, Junfei Qiao, A node pruning algorithm for feedforward neural network based on neural complexity, in: Proceedings of the 2010 International Conference on, Intelligent Control and Information Processing (ICICIP), Dalian, China, 2010, http://dx.doi.org/10.1109/ICICIP.2010.5564272.
    • (2010) in: Proceedings of the 2010 International Conference on
    • Zhang, Z.1    Qiao, J.2
  • 34
    • 33745442476 scopus 로고    scopus 로고
    • Genetic optimization-driven multi-layer hybrid fuzzy neural networks
    • Oh S.-K., Pedrycz W. Genetic optimization-driven multi-layer hybrid fuzzy neural networks. Simulation Modelling Pract. Theory 2006, 14(5):597-613. 10.1016/j.simpat.2005.10.009.
    • (2006) Simulation Modelling Pract. Theory , vol.14 , Issue.5 , pp. 597-613
    • Oh, S.-K.1    Pedrycz, W.2
  • 35
    • 43649086353 scopus 로고    scopus 로고
    • Identification and control of nonlinear systems by a dissimilation particle swarm optimization-based Elman neural network
    • Ge H., Qian F., Liang Y., Du W., Wang L. Identification and control of nonlinear systems by a dissimilation particle swarm optimization-based Elman neural network. Nonlinear Anal. Real World Appl. 2008, 9(4):1345-1360. 10.1016/j.nonrwa.2007.03.008.
    • (2008) Nonlinear Anal. Real World Appl. , vol.9 , Issue.4 , pp. 1345-1360
    • Ge, H.1    Qian, F.2    Liang, Y.3    Du, W.4    Wang, L.5
  • 36
    • 52149112310 scopus 로고    scopus 로고
    • Hybrid multiobjective evolutionary design for artificial neural networks
    • Goh C.K., Teoh E.J., Tan K.C. Hybrid multiobjective evolutionary design for artificial neural networks. IEEE Trans. Neural Networks 2008, 19(9):1531-1548.
    • (2008) IEEE Trans. Neural Networks , vol.19 , Issue.9 , pp. 1531-1548
    • Goh, C.K.1    Teoh, E.J.2    Tan, K.C.3
  • 37
    • 77956616279 scopus 로고    scopus 로고
    • Robust identification of nonlinear complex systems using low complexity and particle swarm optimization technique
    • Majhi B., Panda G. Robust identification of nonlinear complex systems using low complexity and particle swarm optimization technique. Expert Syst. Appl. 2011, 38(1):321-333. 10.1016/j.eswa.2010.06.070.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.1 , pp. 321-333
    • Majhi, B.1    Panda, G.2
  • 38
    • 84857239400 scopus 로고    scopus 로고
    • Neural networks applied in chemistry i determination of the optimal topology of multilayer perceptron neural networks
    • Curteanu S., Cartwright H. Neural networks applied in chemistry i determination of the optimal topology of multilayer perceptron neural networks. J. Chemometrics 2011, 25:527-549. 10.1002/cem.1401.
    • (2011) J. Chemometrics , vol.25 , pp. 527-549
    • Curteanu, S.1    Cartwright, H.2
  • 39
    • 33750311824 scopus 로고    scopus 로고
    • Multiple recurrent neural networks for stable adaptive control
    • Yu W. Multiple recurrent neural networks for stable adaptive control. Neurocomputing 2006, 70(1-3):430-444. 10.1016/j.neucom.2005.12.122.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 430-444
    • Yu, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.