메뉴 건너뛰기




Volumn 15, Issue 5, 2010, Pages 1318-1326

How to impose physically coherent initial conditions to a fractional system?

Author keywords

Diffusion equation; Fractional order system; Initialization

Indexed keywords

PARTIAL DIFFERENTIAL EQUATIONS;

EID: 70449122339     PISSN: 10075704     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cnsns.2009.05.070     Document Type: Article
Times cited : (183)

References (25)
  • 1
    • 0001752652 scopus 로고    scopus 로고
    • Diffusive representation of pseudo-differential time-operators
    • Montseny G. Diffusive representation of pseudo-differential time-operators. ESAIM: proceedings, vol. 5; 1998. p. 159-75.
    • (1998) ESAIM: Proceedings , vol.5 , pp. 159-175
    • Montseny, G.1
  • 2
    • 0000074512 scopus 로고    scopus 로고
    • Stability properties for generalized fractional differential systems
    • Matignon D. Stability properties for generalized fractional differential systems. ESAIM: proceedings, vol. 5; 1998. p. 145-58.
    • (1998) ESAIM: Proceedings , vol.5 , pp. 145-158
    • Matignon, D.1
  • 7
    • 0036650827 scopus 로고    scopus 로고
    • Dynamics and control of initialized fractional-order systems
    • Hartley T.T., and Lorenzo C.F. Dynamics and control of initialized fractional-order systems. Nonlinear Dynam 29 1-4 (2002) 201-233
    • (2002) Nonlinear Dynam , vol.29 , Issue.1-4 , pp. 201-233
    • Hartley, T.T.1    Lorenzo, C.F.2
  • 9
    • 17844372193 scopus 로고    scopus 로고
    • Recent applications of fractional calculus to science and engineering
    • Debnath L. Recent applications of fractional calculus to science and engineering. Int J Math Math Sci 54 (2003) 3413-3442
    • (2003) Int J Math Math Sci , vol.54 , pp. 3413-3442
    • Debnath, L.1
  • 12
    • 0004681849 scopus 로고
    • A fractional integral and its physical interpretation
    • Nigmatullin R.R. A fractional integral and its physical interpretation. Theoret Math Phys 90 3 (1992)
    • (1992) Theoret Math Phys , vol.90 , Issue.3
    • Nigmatullin, R.R.1
  • 13
    • 21444449184 scopus 로고
    • On physical interpretations of fractional integration and differentiation
    • Rutman R.S. On physical interpretations of fractional integration and differentiation. Theoret Math Phys 105 3 (1995) 393-404
    • (1995) Theoret Math Phys , vol.105 , Issue.3 , pp. 393-404
    • Rutman, R.S.1
  • 14
    • 0002202976 scopus 로고    scopus 로고
    • Geometric interpretation of the fractional derivative
    • Ben Adda F. Geometric interpretation of the fractional derivative. J Fract Calc 11 (1997) 21-52
    • (1997) J Fract Calc , vol.11 , pp. 21-52
    • Ben Adda, F.1
  • 15
    • 85196153828 scopus 로고    scopus 로고
    • editors. Transform methods and special functions. Varna'96, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia;
    • Gorenflo R. Afterthoughts on interpretation of fractional derivatives and integrals. In: Rusev P, Dimovski I, Kiryakova V, editors. Transform methods and special functions. Varna'96, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia; 1998.
    • (1998) Afterthoughts on interpretation of fractional derivatives and integrals
    • Gorenflo, R.1
  • 16
    • 85196157055 scopus 로고    scopus 로고
    • editors. Transform methods and special fucntions. Varna'96, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia;
    • Mainardi F. Considerations on fractional calculus: interpretations and applications. In: Rusev P, Dimovski I, Kiryakova V, editors. Transform methods and special fucntions. Varna'96, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia; 1998.
    • (1998) Considerations on fractional calculus: Interpretations and applications
    • Mainardi, F.1
  • 17
    • 0242354999 scopus 로고    scopus 로고
    • Geometric and physical interpretation of fractional integration and fractional differentiation
    • Podlubny I. Geometric and physical interpretation of fractional integration and fractional differentiation. J Fract Calc Appl Anal 5 4 (2002) 357-366
    • (2002) J Fract Calc Appl Anal , vol.5 , Issue.4 , pp. 357-366
    • Podlubny, I.1
  • 18
    • 14844296496 scopus 로고    scopus 로고
    • A probabilistic interpretation of the fractional-order differentiation
    • Tenreiro Machado J.A. A probabilistic interpretation of the fractional-order differentiation. J Fract Calc Appl Anal 6 1 (2003) 73-80
    • (2003) J Fract Calc Appl Anal , vol.6 , Issue.1 , pp. 73-80
    • Tenreiro Machado, J.A.1
  • 24
    • 24344479975 scopus 로고    scopus 로고
    • Is there a physical/geometrical meaning of the fractional integral with complex exponent?
    • Nigmatullin R.R., and Le Mehaute A. Is there a physical/geometrical meaning of the fractional integral with complex exponent?. J Non-Crystalline Solids 351 (2005) 2888-2899
    • (2005) J Non-Crystalline Solids , vol.351 , pp. 2888-2899
    • Nigmatullin, R.R.1    Le Mehaute, A.2
  • 25
    • 32544456755 scopus 로고    scopus 로고
    • Applications of continuous-time random walks in finance and economics
    • Scalas E. Applications of continuous-time random walks in finance and economics. Physica A 362 2 (2006) 225-239
    • (2006) Physica A , vol.362 , Issue.2 , pp. 225-239
    • Scalas, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.