메뉴 건너뛰기




Volumn 220, Issue , 2013, Pages 269-291

Efficient stochastic algorithms for document clustering

Author keywords

Document clustering; Harmony search; Hybridization; K means; Stochastic optimization

Indexed keywords

DOCUMENT CLUSTERING; HARMONY SEARCH; HYBRIDIZATION; K-MEANS; STOCHASTIC OPTIMIZATIONS;

EID: 84868443623     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2012.07.025     Document Type: Conference Paper
Times cited : (110)

References (55)
  • 1
    • 67849118587 scopus 로고    scopus 로고
    • Performance evaluation of density-based clustering methods
    • R.M. Aliguliyev Performance evaluation of density-based clustering methods Information Sciences 179 20 2009 3583 3602
    • (2009) Information Sciences , vol.179 , Issue.20 , pp. 3583-3602
    • Aliguliyev, R.M.1
  • 4
    • 0036798199 scopus 로고    scopus 로고
    • An evolutionary technique based on K-means algorithm for optimal clustering
    • S. Bandyopadhyay, and U. Maulik An evolutionary technique based on K-means algorithm for optimal clustering Information Sciences 146 2002 221 237
    • (2002) Information Sciences , vol.146 , pp. 221-237
    • Bandyopadhyay, S.1    Maulik, U.2
  • 6
    • 0033315817 scopus 로고    scopus 로고
    • Document categorization and query generation on the World Wide Web using WebACE
    • D. Boley, M. Gini, and R. Gross Document categorization and query generation on the World Wide Web using WebACE Artificial Intelligence Review 13 5/6 1999 365 391
    • (1999) Artificial Intelligence Review , vol.13 , Issue.5-6 , pp. 365-391
    • Boley, D.1    Gini, M.2    Gross, R.3
  • 8
    • 78649849282 scopus 로고    scopus 로고
    • A time-efficient pattern reduction algorithm for K-means clustering
    • M.C. Chiang, C.W. Tsai, and C.S. Yang A time-efficient pattern reduction algorithm for K-means clustering Information Sciences 181 4 2011 716 731
    • (2011) Information Sciences , vol.181 , Issue.4 , pp. 716-731
    • Chiang, M.C.1    Tsai, C.W.2    Yang, C.S.3
  • 10
    • 0242563290 scopus 로고    scopus 로고
    • Masters thesis, Department of Computer Science, University of Western Australia, Australia
    • R.M. Cole, Clustering with Genetic Algorithms, Masters thesis, Department of Computer Science, University of Western Australia, Australia, 1998.
    • (1998) Clustering with Genetic Algorithms
    • Cole, R.M.1
  • 12
    • 33750998476 scopus 로고    scopus 로고
    • Document clustering analysis based on hybrid PSO+K-means algorithm
    • X. Cui, and T.E. Potok Document clustering analysis based on hybrid PSO+K-means algorithm Journal of Computer Sciences 2005 27 33
    • (2005) Journal of Computer Sciences , pp. 27-33
    • Cui, X.1    Potok, T.E.2
  • 14
    • 0033729054 scopus 로고    scopus 로고
    • An efficient constraint handling method for genetic algorithms
    • K. Deb An efficient constraint handling method for genetic algorithms Computer Methods in Applied Mechanics and Engineering 186 2000 311 338
    • (2000) Computer Methods in Applied Mechanics and Engineering , vol.186 , pp. 311-338
    • Deb, K.1
  • 16
    • 0003578015 scopus 로고
    • second ed. Halsted Press New York
    • B. Everitt Cluster analysis second ed. 1980 Halsted Press New York
    • (1980) Cluster Analysis
    • Everitt, B.1
  • 18
    • 41949119615 scopus 로고    scopus 로고
    • Novel derivative of harmony search algorithm for discrete design variables
    • Z.W. Geem Novel derivative of harmony search algorithm for discrete design variables Applied Mathematics and Computation 199 1 2008 223 230
    • (2008) Applied Mathematics and Computation , vol.199 , Issue.1 , pp. 223-230
    • Geem, Z.W.1
  • 20
    • 78649988837 scopus 로고    scopus 로고
    • Parameter-setting-free harmony search algorithm
    • Z.W. Geem, and K-B Sim Parameter-setting-free harmony search algorithm Applied Mathematics and Computation 217 8 2010 3881 3889
    • (2010) Applied Mathematics and Computation , vol.217 , Issue.8 , pp. 3881-3889
    • Geem, Z.W.1    Sim, K.-B.2
  • 28
    • 0032686723 scopus 로고    scopus 로고
    • CHAMELEON: A hierarchical clustering algorithm using dynamic modeling
    • G. Karypis, E.H. Han, and V. Kumar CHAMELEON: a hierarchical clustering algorithm using dynamic modeling Computer 32 1999 68 75
    • (1999) Computer , vol.32 , pp. 68-75
    • Karypis, G.1    Han, E.H.2    Kumar, V.3
  • 31
    • 0002862737 scopus 로고    scopus 로고
    • Fast and effective text mining using linear-time document clustering
    • San Diego, USA
    • B. Larsen, C. Aone, Fast and effective text mining using linear-time document clustering, in: Proceedings of the KDD-99 Workshop, San Diego, USA, 1999.
    • (1999) Proceedings of the KDD-99 Workshop
    • Larsen, B.1    Aone, C.2
  • 32
    • 20444466485 scopus 로고    scopus 로고
    • A new meta-heuristic algorithm for continues engineering optimization: Harmony search theory and practice
    • K.S. Lee, and Z.W. Geem A new meta-heuristic algorithm for continues engineering optimization: harmony search theory and practice Computer Methods in Applied Mechanics and Engineering 194 2004 3902 3933
    • (2004) Computer Methods in Applied Mechanics and Engineering , vol.194 , pp. 3902-3933
    • Lee, K.S.1    Geem, Z.W.2
  • 35
    • 34248141625 scopus 로고    scopus 로고
    • An improved harmony search algorithm for solving optimization problems
    • M. Mahdavi, M. Fesanghary, and E. Damangir An improved harmony search algorithm for solving optimization problems Applied Mathematics and Computation 188 2 2007 1567 1579
    • (2007) Applied Mathematics and Computation , vol.188 , Issue.2 , pp. 1567-1579
    • Mahdavi, M.1    Fesanghary, M.2    Damangir, E.3
  • 38
    • 0029358115 scopus 로고
    • Parallel algorithms for hierarchical clustering
    • C.F. Olson Parallel algorithms for hierarchical clustering Parallel Computing 21 1995 1313 1325
    • (1995) Parallel Computing , vol.21 , pp. 1313-1325
    • Olson, C.F.1
  • 46
    • 26444574794 scopus 로고    scopus 로고
    • Hybridization of the ant colony optimization with the K-means algorithm for clustering
    • Image Analysis Springer Berlin
    • S. Saatchi, and C.C. Hung Hybridization of the ant colony optimization with the K-means algorithm for clustering Lecture Notes in Computer Science Image Analysis vol. 3540 2005 Springer Berlin
    • (2005) Lecture Notes in Computer Science , vol.3540
    • Saatchi, S.1    Hung, C.C.2
  • 48
    • 60849117781 scopus 로고    scopus 로고
    • Genetic algorithm for text clustering using ontology and evaluating the validity of various semantic similarity measures
    • W. Song, C. Hua Li, and S. Cheol Park Genetic algorithm for text clustering using ontology and evaluating the validity of various semantic similarity measures Expert Systems with Applications 36 2009 9095 9104
    • (2009) Expert Systems with Applications , vol.36 , pp. 9095-9104
    • Song, W.1    Hua Li, C.2    Cheol Park, S.3
  • 51
    • 23944477313 scopus 로고    scopus 로고
    • A parallel hybrid web document clustering algorithm and its performance study
    • S. Xu, and J. Zhang A parallel hybrid web document clustering algorithm and its performance study The Journal of Supercomputing 30 2004 117 131
    • (2004) The Journal of Supercomputing , vol.30 , pp. 117-131
    • Xu, S.1    Zhang, J.2
  • 53
    • 79960559932 scopus 로고    scopus 로고
    • A novel ant-based clustering algorithm using the kernel method
    • doi:10.1016/j.ins.2010.11.005 (in press) (corrected proof)
    • L. Zhang, Q. Cao, A novel ant-based clustering algorithm using the kernel method, Information Sciences (in press) http://dx.doi.org/10.1016/j.ins.2010. 11.005 (corrected proof).
    • Information Sciences
    • Zhang, L.1    Cao, Q.2
  • 54
    • 0037869164 scopus 로고    scopus 로고
    • Criterion Functions for Document Clustering Experiments and Analysis
    • Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN
    • Y. Zhao, G. Karypis, Criterion Functions for Document Clustering Experiments and Analysis, Technical Report #01-40, Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, 2001.
    • (2001) Technical Report #01-40
    • Zhao, Y.1    Karypis, G.2
  • 55
    • 3543085722 scopus 로고    scopus 로고
    • Empirical and theoretical comparisons of selected criterion functions for document clustering
    • Y. Zhao, and G. Karypis Empirical and theoretical comparisons of selected criterion functions for document clustering Machine Learning 55 3 2004 311 331
    • (2004) Machine Learning , vol.55 , Issue.3 , pp. 311-331
    • Zhao, Y.1    Karypis, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.