메뉴 건너뛰기




Volumn 31, Issue 1-2, 2011, Pages 13-38

Predictive bayesian model selection

Author keywords

Effective number of parameters; Empirical Bayes Markov chain Monte Carlo; Hierarchical Bayesian model; Model misspecification

Indexed keywords

BAYESIAN MODEL; BAYESIAN MODEL SELECTION; EFFECTIVE NUMBER OF PARAMETERS; HIERARCHICAL BAYESIAN MODELS; INFORMATION CRITERION; MARKOV CHAIN MONTE CARLO; MISSPECIFICATION; MONTE CARLO SIMULATION; POSTERIOR MEANS; PREDICTIVE DISTRIBUTIONS; STUDY AREAS;

EID: 84868296532     PISSN: 01966324     EISSN: None     Source Type: Journal    
DOI: 10.1080/01966324.2011.10737798     Document Type: Article
Times cited : (94)

References (37)
  • 4
    • 34548388929 scopus 로고    scopus 로고
    • Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models
    • Ando, T. (2007). Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models. Biometrika. 94, 443-458.
    • (2007) Biometrika , vol.94 , pp. 443-458
    • Ando, T.1
  • 6
    • 84868284782 scopus 로고    scopus 로고
    • Bayesian portfolio selection under a multifactor asset return model with predictive Bayesian model selection
    • Ando, T. (2010b). Bayesian portfolio selection under a multifactor asset return model with predictive Bayesian model selection. Proceeding of International Association for the Scientific Knowledge Global Management 2010, 111-120.
    • (2010) Proceeding of International Association for the Scientific Knowledge Global Management , vol.2010 , pp. 111-120
    • Ando, T.1
  • 7
    • 77956264822 scopus 로고    scopus 로고
    • Predictive marginal likelihood for the Bayesian model selection and averaging
    • Ando, T. and Tsay, R. (2010). Predictive marginal likelihood for the Bayesian model selection and averaging. International Journal of Forecasting, 26, 744-763.
    • (2010) International Journal of Forecasting , vol.26 , pp. 744-763
    • Ando, T.1    Tsay, R.2
  • 8
    • 49049090541 scopus 로고    scopus 로고
    • Nonlinear regression modeling via regularized radial basis function networks
    • Ando, T., Konishi, S. and Imoto, S. (2008). Nonlinear regression modeling via regularized radial basis function networks. Journal of Statistical Planning and Inference. 138, 3616-3633.
    • (2008) Journal of Statistical Planning and Inference , vol.138 , pp. 3616-3633
    • Ando, T.1    Konishi, S.2    Imoto, S.3
  • 10
    • 0742271637 scopus 로고    scopus 로고
    • Deviance information criterion comparing stochastic volatility models
    • Berg, A., Meyer, R. and Yu, J. (2004). Deviance information criterion comparing stochastic volatility models. Journal of Business and Economic Statistics. 22, 107-120.
    • (2004) Journal of Business and Economic Statistics , vol.22 , pp. 107-120
    • Berg, A.1    Meyer, R.2    Yu, J.3
  • 14
    • 0011716069 scopus 로고    scopus 로고
    • Markov Chain Monte Carlo Methods for Stochastic Volatility Models
    • Chib, S., Nardari, F. and Shephard, N. (2002). Markov Chain Monte Carlo Methods for Stochastic Volatility Models. Journal of Econometrics. 108, 281-316.
    • (2002) Journal of Econometrics , vol.108 , pp. 281-316
    • Chib, S.1    Nardari, F.2    Shephard, N.3
  • 16
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with B-splines and penalties (With Discussion)
    • Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties (with Discussion). Statistical Science. 11, 89-121.
    • (1996) Statistical Science , vol.11 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 17
  • 18
    • 0002799511 scopus 로고    scopus 로고
    • Model choice: A minimum posterior predictive loss approach
    • Gelfand, A. and Ghosh, S. (1998). Model choice: a minimum posterior predictive loss approach. Biometrika. 85, 1-11.
    • (1998) Biometrika. , vol.85 , pp. 1-11
    • Gelfand, A.1    Ghosh, S.2
  • 19
    • 0001354983 scopus 로고    scopus 로고
    • Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion
    • Hurvich, C. M., Simonoff, J. S. and Tsai, C.-L. (1998), Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. Journal of the Royal Statistical Society, B60, 271-293.
    • (1998) Journal of the Royal Statistical Society , vol.B60 , pp. 271-293
    • Hurvich, C.M.1    Simonoff, J.S.2    Tsai, C.-L.3
  • 22
    • 0001251517 scopus 로고    scopus 로고
    • Stochastic volatility: Likelihood inference comparison with ARCH models
    • Kim, S., Shephard, N. and Chib, S. (1998). Stochastic volatility: likelihood inference comparison with ARCH models. Review of Economic Studies. 65, 361-393.
    • (1998) Review of Economic Studies , vol.65 , pp. 361-393
    • Kim, S.1    Shephard, N.2    Chib, S.3
  • 23
    • 0000512689 scopus 로고    scopus 로고
    • Generalized information criteria in model selection
    • Konishi, S. and Kitagawa, G. (1996). Generalized information criteria in model selection. Biometrika. 83, 875-890.
    • (1996) Biometrika , vol.83 , pp. 875-890
    • Konishi, S.1    Kitagawa, G.2
  • 24
    • 3242882795 scopus 로고    scopus 로고
    • Bayesian information criteria and smoothing parameter selection in radial basis function networks
    • Konishi, S., Ando, T. and Imoto, S. (2004). Bayesian information criteria and smoothing parameter selection in radial basis function networks. Biometrika. 91, 27-43.
    • (2004) Biometrika , vol.91 , pp. 27-43
    • Konishi, S.1    O, T.2    Imoto, S.3
  • 27
    • 0028544395 scopus 로고
    • Network information criterion determining the number of hidden units for an artificial neural network model
    • Murata, N., Yoshizawa, S. and Amari, S. (1994). Network information criterion determining the number of hidden units for an artificial neural network model. IEEE Transactions on Neural Networks. 5, 865-872.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.3
  • 28
    • 0003078723 scopus 로고
    • Approximate Bayesian inference with the weighted likelihood bootstrap (With Discussion)
    • Newton, M. A. and Raftery, A. E. (1994). Approximate Bayesian inference with the weighted likelihood bootstrap (with Discussion). Journal of the Royal Statistical Society, B56, 3-48.
    • (1994) Journal of the Royal Statistical Society , vol.B56 , pp. 3-48
    • Newton, M.A.1    Raftery, A.E.2
  • 29
    • 0001857092 scopus 로고
    • Fractional Bayes factors for model comparison (With Discussion)
    • O’Hagan, A. (1995). Fractional Bayes factors for model comparison (with Discussion). Journal of the Royal Statistical Society, B57, 99-138.
    • (1995) Journal of the Royal Statistical Society , vol.B57 , pp. 99-138
    • O’hagan, A.1
  • 30
    • 23544470859 scopus 로고    scopus 로고
    • Expected-posterior prior distributions for model selection
    • Perez, J. M. and Berger, J. O. (2002). Expected-posterior prior distributions for model selection. Biometrika. 89, 491-512.
    • (2002) Biometrika , vol.89 , pp. 491-512
    • Perez, J.M.1    Berger, J.O.2
  • 31
    • 45849088346 scopus 로고    scopus 로고
    • Penalized loss functions for Bayesian model comparison
    • Plummer, M. (2008). Penalized loss functions for Bayesian model comparison. Biostatistics. 9, 523-539.
    • (2008) Biostatistics , vol.9 , pp. 523-539
    • Plummer, M.1
  • 32
    • 84973897521 scopus 로고    scopus 로고
    • Population Projection of Kerala using Bayesian Methodology
    • Rahul Pandev, G. S. and Singh, O. P. (2009). Population Projection of Kerala using Bayesian Methodology. Asian Journal of Applied Sciences, 2, 402-413.
    • (2009) Asian Journal of Applied Sciences , vol.2 , pp. 402-413
    • Rahul Pandev, G.S.1    Singh, O.P.2
  • 37
    • 84868270781 scopus 로고    scopus 로고
    • A Direct Monte Carlo approach for Bayesian analysis of the seemingly unrelated regression model with informative prior (In Japanese)
    • Zellner, A. and Ando T. (2010). A Direct Monte Carlo approach for Bayesian analysis of the seemingly unrelated regression model with informative prior (in Japanese). Journal of the Japan Statistical Society, 39, 297-312.
    • (2010) Journal of the Japan Statistical Society , vol.39 , pp. 297-312
    • Zellner, A.1    Ando, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.