-
1
-
-
34548687102
-
Mathematical Aspects of Classical and Celestial Mechanics
-
Springer, Berlin, Encyclopaedia of Mathematical Sciences
-
Arnold V.I., Kozlov V.V., Neishtadt A.I. Mathematical Aspects of Classical and Celestial Mechanics. Dynamical systems 2006, vol. III. Springer, Berlin. third ed.
-
(2006)
Dynamical systems
, vol.3
-
-
Arnold, V.I.1
Kozlov, V.V.2
Neishtadt, A.I.3
-
3
-
-
0003003451
-
Averaging in systems of ordinary differential equations
-
Volosov V.M. Averaging in systems of ordinary differential equations. Russian Math. Surveys 1962, 17:1-126.
-
(1962)
Russian Math. Surveys
, vol.17
, pp. 1-126
-
-
Volosov, V.M.1
-
4
-
-
34250627892
-
Geometric singular perturbation theory for ordinary differential equations
-
Fenichel N. Geometric singular perturbation theory for ordinary differential equations. J. Differential Equations 1979, 31:53-98. http://dx.doi.org/10.1016/0022-0396(79)90152-9.
-
(1979)
J. Differential Equations
, vol.31
, pp. 53-98
-
-
Fenichel, N.1
-
6
-
-
77955554687
-
Choose interelement coupling to preserve self-adjoint dynamics in multi-scale modelling and computation
-
Roberts A.J. Choose interelement coupling to preserve self-adjoint dynamics in multi-scale modelling and computation. Appl. Numer. Mode. 2010, 60:949-973. http://dx.doi.org/10.1016/j.apnum.2010.06.002.
-
(2010)
Appl. Numer. Mode.
, vol.60
, pp. 949-973
-
-
Roberts, A.J.1
-
8
-
-
3042793188
-
Extracting macroscopic dynamics: model problems and algorithms
-
Givon D., Kupferman R., Stuart A. Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 2004, 17:R55-R127. http://dx.doi.org/10.1088/0951-7715/17/6/R01.
-
(2004)
Nonlinearity
, vol.17
-
-
Givon, D.1
Kupferman, R.2
Stuart, A.3
-
9
-
-
0037950069
-
Geometric singular perturbation theory for stochastic differential equations
-
Berglund N., Gentz B. Geometric singular perturbation theory for stochastic differential equations. J. Differential Equations 2003, 191:1-54. 10.1016/0022-0396(03)00020-2.
-
(2003)
J. Differential Equations
, vol.191
, pp. 1-54
-
-
Berglund, N.1
Gentz, B.2
-
11
-
-
58149166716
-
Calculating effective diffusivities in the limit of vanishing molecular diffusion
-
Pavliotis G.A., Stuart A.M., Zygalakis K.C. Calculating effective diffusivities in the limit of vanishing molecular diffusion. J. Comput. Phys. 2009, 228:1030-1055. http://dx.doi.org/10.1016/j.jcp.2008.10.014.
-
(2009)
J. Comput. Phys.
, vol.228
, pp. 1030-1055
-
-
Pavliotis, G.A.1
Stuart, A.M.2
Zygalakis, K.C.3
-
12
-
-
7244229982
-
Some remarks on the Smoluchowski-Kramers approximation
-
Freidlin M. Some remarks on the Smoluchowski-Kramers approximation. J. Stat. Phys. 2004, 117:617-634.
-
(2004)
J. Stat. Phys.
, vol.117
, pp. 617-634
-
-
Freidlin, M.1
-
13
-
-
84863516694
-
Averaging approximation to singularly perturbed nonlinear stochastic wave equations
-
Lv Yan, Roberts A.J. Averaging approximation to singularly perturbed nonlinear stochastic wave equations. J. Math. Phys. 2012, 53:062702.
-
(2012)
J. Math. Phys.
, vol.53
, pp. 062702
-
-
Lv, Y.1
Roberts, A.J.2
-
14
-
-
35748935082
-
Normal form transforms separate slow and fast modes in stochastic dynamical systems
-
Roberts A.J. Normal form transforms separate slow and fast modes in stochastic dynamical systems. Physica A 2008, 387:12-38. http://dx.doi.org/10.1016/j.physa.2007.08.023.
-
(2008)
Physica A
, vol.387
, pp. 12-38
-
-
Roberts, A.J.1
-
15
-
-
77955819042
-
Normal form of stochastic or deterministic multiscale differential equations
-
Technical report Revised April 2011.
-
A.J. Roberts, Normal form of stochastic or deterministic multiscale differential equations, Technical report 2009, Revised April 2011 http://www.maths.adelaide.edu.au/anthony.roberts/sdenf.php.
-
(2009)
-
-
Roberts, A.J.1
-
16
-
-
43349105355
-
Invariant manifold for random dynamical systems with slow and fast variables
-
Schmalfuß B., Schneider K.R. Invariant manifold for random dynamical systems with slow and fast variables. J. Dynam. Differential Equations 2008, 20(1):133-164. http://dx.doi.org/10.1007/s10884-007-9089-7.
-
(2008)
J. Dynam. Differential Equations
, vol.20
, Issue.1
, pp. 133-164
-
-
Schmalfuß, B.1
Schneider, K.R.2
-
18
-
-
21844482698
-
Attractors for random dynamical systems
-
Crauel H., Flandoli F. Attractors for random dynamical systems. Probab. Theory Related Fields 1994, 100:365-393. http://dx.doi.org/10.1007/BF01193705.
-
(1994)
Probab. Theory Related Fields
, vol.100
, pp. 365-393
-
-
Crauel, H.1
Flandoli, F.2
-
19
-
-
33748854567
-
Smooth stable and unstable manifolds for stochastic partial differential equations
-
Duan J., Lu K., Schmalfuß B. Smooth stable and unstable manifolds for stochastic partial differential equations. J. Dynam. Differential Equations 2004, 16(4):949-972. http://dx.doi.org/10.1007/s10884-004-7830-z.
-
(2004)
J. Dynam. Differential Equations
, vol.16
, Issue.4
, pp. 949-972
-
-
Duan, J.1
Lu, K.2
Schmalfuß, B.3
-
20
-
-
36148990325
-
A dynamical approximation for stochastic partial differential equations
-
Wang W., Duan J. A dynamical approximation for stochastic partial differential equations. J. Math. Phys. 2007, 48. http://dx.doi.org/102701-14.10.1063/1.2800164.
-
(2007)
J. Math. Phys.
, vol.48
-
-
Wang, W.1
Duan, J.2
-
21
-
-
0002563770
-
Appropriate initial conditions for asymptotic descriptions of the long term evolution of dynamical systems
-
Roberts A.J. Appropriate initial conditions for asymptotic descriptions of the long term evolution of dynamical systems. J. Aust. Math. Soc. B 1989, 31:48-75.
-
(1989)
J. Aust. Math. Soc. B
, vol.31
, pp. 48-75
-
-
Roberts, A.J.1
-
22
-
-
0038968243
-
Averaging and fluctuations for parabolic equations with rapidly oscillating random coefficients
-
Watanabe H. Averaging and fluctuations for parabolic equations with rapidly oscillating random coefficients. Probab. Theory Related Fields 1988, 77:359-378. http://dx.doi.org/10.1007/BF00319294.
-
(1988)
Probab. Theory Related Fields
, vol.77
, pp. 359-378
-
-
Watanabe, H.1
-
23
-
-
84861943375
-
Average and deviation for slow-fast stochastic partial differential equations
-
Wang W., Roberts A.J. Average and deviation for slow-fast stochastic partial differential equations. J. Differential Equations 2012, 233:1265-1286.
-
(2012)
J. Differential Equations
, vol.233
, pp. 1265-1286
-
-
Wang, W.1
Roberts, A.J.2
-
24
-
-
0042540192
-
On the low-dimensional modelling of Stratonovich stochastic differential equations
-
Chao Xu, Roberts A.J. On the low-dimensional modelling of Stratonovich stochastic differential equations. Physica A 1996, 225:62-80. 10.1016/0378-4371(95)00387-8.
-
(1996)
Physica A
, vol.225
, pp. 62-80
-
-
Chao, X.1
Roberts, A.J.2
-
25
-
-
0000182826
-
On the principle of averaging the ItÔ's stochastic differential equations
-
(in Russian)
-
Khasminskii R.Z. On the principle of averaging the ItÔ's stochastic differential equations. Kibernetika 1968, 4:260-279. (in Russian).
-
(1968)
Kibernetika
, vol.4
, pp. 260-279
-
-
Khasminskii, R.Z.1
-
26
-
-
0003203004
-
Asymptotic Methods in the Theory of Stochastic Differential Equations
-
American Mathematical Society, Providence, RI
-
Skorokhod A.V. Asymptotic Methods in the Theory of Stochastic Differential Equations. Translations of Mathematical Monographs 1989, vol. 78. American Mathematical Society, Providence, RI.
-
(1989)
Translations of Mathematical Monographs
, vol.78
-
-
Skorokhod, A.V.1
-
27
-
-
2942597464
-
Diffusion approximation for slow motion in fully coupled averaging
-
Kifer Y. Diffusion approximation for slow motion in fully coupled averaging. Probab. Theory Related Fields 2004, 129:157-181.
-
(2004)
Probab. Theory Related Fields
, vol.129
, pp. 157-181
-
-
Kifer, Y.1
-
28
-
-
0037360847
-
Homogenization of a nonlinear random parabolic partial differential equation
-
Pardoux E., Piatnitski A.L. Homogenization of a nonlinear random parabolic partial differential equation. Stoch. Proc. Appl. 2003, 104:1-27. http://dx.doi.org/10.1016/S0304-4149(02)00221-1.
-
(2003)
Stoch. Proc. Appl.
, vol.104
, pp. 1-27
-
-
Pardoux, E.1
Piatnitski, A.L.2
-
29
-
-
0003248250
-
Stochastic Differential Equations and Diffusion Processes
-
North-Holland Publishing Co, Amsterdam
-
Ikeda N., Watanabe S. Stochastic Differential Equations and Diffusion Processes. North-Holland Mathematical Library 1981, Vol. 24. North-Holland Publishing Co, Amsterdam.
-
(1981)
North-Holland Mathematical Library
, vol.24
-
-
Ikeda, N.1
Watanabe, S.2
-
31
-
-
18544364615
-
Some recent progress in multiscale modeling, Multiscale modelling and simulation
-
Springer, Berlin
-
Li W.E, X., Vanden-Eijnden E. Some recent progress in multiscale modeling, Multiscale modelling and simulation. Lect. Notes Comput. Sci. Eng. 2004, 39:3-21. Springer, Berlin.
-
(2004)
Lect. Notes Comput. Sci. Eng.
, vol.39
, pp. 3-21
-
-
Li, W.E.X.1
Vanden-Eijnden, E.2
|