-
1
-
-
0002232810
-
-
C. Elphick, E. Tirapeugi, M.E. Brachet, P. Coullet, G. Iooss, A simple global characterisation for normal forms of singular vector fields, Physica D 29 (1987) 95-127, doi:10.1016/0167-2789(87)90049-2.
-
-
-
-
2
-
-
0000317970
-
-
S.M. Cox, A.J. Roberts, Initial conditions for models of dynamical systems, Physica D 85 (1995) 126-141, doi:10.1016/0167-2789(94)00201-Z.
-
-
-
-
3
-
-
35748932322
-
-
F. Verhulst, Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescales, Texts in Applied Mathematics, vol. 50, Springer, Berlin, 2005.
-
-
-
-
4
-
-
35748940252
-
-
G.A. Pavliotis, A.M. Stuart, Multiscale methods: averaging and homogenization. Technical Report 〈http://www.ma.ic.ac.uk/∼pavl〉, 2007.
-
-
-
-
5
-
-
35748936723
-
-
D. Givon, I.G. Kevrekidis, R. Kupferman, Strong convergence of projective integration schemes for singularly perturbed stochastic differential systems, Technical Report, Department of Mathematics, LBNL, Berkeley, CA 94720, 2006.
-
-
-
-
8
-
-
0032049708
-
-
L. Arnold, P. Imkeller, Normal forms for stochastic differential equations, Probab. Theory Relat. Fields 110 (1998) 559-588, doi:10.1007/s004400050159.
-
-
-
-
9
-
-
0042540192
-
-
X. Chao, A.J. Roberts, On the low-dimensional modelling of Stratonovich stochastic differential equations, Physica A 225 (1996) 62-80, doi:10.1016/0378-4371(95)00387-8.
-
-
-
-
10
-
-
35748963494
-
Resolving the multitude of microscale interactions accurately models stochastic partial differential equations
-
〈http://www.lms.ac.uk/jcm/9/lms2005-032〉.
-
Roberts A.J. Resolving the multitude of microscale interactions accurately models stochastic partial differential equations. LMS J. Comput. Math. 9 (2006) 193-221. http://www.lms.ac.uk/jcm/9/lms2005-032 〈http://www.lms.ac.uk/jcm/9/lms2005-032〉.
-
(2006)
LMS J. Comput. Math.
, vol.9
, pp. 193-221
-
-
Roberts, A.J.1
-
11
-
-
35748930832
-
-
A. Du, J. Duan, Invariant manifold reduction for stochastic dynamical systems, Technical Report 〈http://arXiv.org/abs/math.DS/0607366〉, 2006.
-
-
-
-
12
-
-
0002425680
-
Inertial manifolds
-
Temam R. Inertial manifolds. Math. Intelligencer 12 (1990) 68-74
-
(1990)
Math. Intelligencer
, vol.12
, pp. 68-74
-
-
Temam, R.1
-
14
-
-
0011551779
-
Normal form of a Hopf bifurcation with noise
-
Coullet P.H., Elphick C., and Tirapegui E. Normal form of a Hopf bifurcation with noise. Phys. Lett. 111A 6 (1985) 277-282
-
(1985)
Phys. Lett.
, vol.111 A
, Issue.6
, pp. 277-282
-
-
Coullet, P.H.1
Elphick, C.2
Tirapegui, E.3
-
15
-
-
35748966385
-
-
A.J. Roberts, Normal form of stochastic or deterministic multiscale differential equations, Technical Report 〈http://www.sci.usq.edu.au/staff/robertsa/sdenf.html〉, 2007.
-
-
-
-
16
-
-
0011604241
-
Equivalence of stochastic averaging and stochastic normal forms
-
Sri Namachchivaya N., and Leng G. Equivalence of stochastic averaging and stochastic normal forms. J. Appl. Mech. 57 (1990) 1011-1017
-
(1990)
J. Appl. Mech.
, vol.57
, pp. 1011-1017
-
-
Sri Namachchivaya, N.1
Leng, G.2
-
18
-
-
35748979964
-
-
D.W. Pierce, Distinguishing coupled ocean-atmosphere interactions from background noise in the North Pacific, Technical Report 〈http://meteora.ucsd.edu/∼pierce/docs/Pierce_2001_Prog_Oceanog.pdf〉, 2001.
-
-
-
-
19
-
-
0035918128
-
-
W. Just, H. Kantz, C. Rodenbeck, M. Helm, Stochastic modelling: replacing fast degrees of freedom by noise, J. Phys. A 34 (2001) 3199-3213, doi:10.1088/0305-4470/34/15/302.
-
-
-
-
20
-
-
0031099492
-
Low-dimensional modelling of dynamics via computer algebra
-
Roberts A.J. Low-dimensional modelling of dynamics via computer algebra. Comput. Phys. Commun. 100 (1997) 215-230
-
(1997)
Comput. Phys. Commun.
, vol.100
, pp. 215-230
-
-
Roberts, A.J.1
-
21
-
-
0011607426
-
A stochastic version of the centre manifold theorem
-
Boxler P. A stochastic version of the centre manifold theorem. Probab. Theory Relat. Fields 83 (1989) 509-545
-
(1989)
Probab. Theory Relat. Fields
, vol.83
, pp. 509-545
-
-
Boxler, P.1
-
22
-
-
0037950069
-
-
N. Berglund, B. Gentz, Geometric singular perturbation theory for stochastic differential equations, J. Differential Equations 191 (2003) 1-54, doi:10.1016/S0022-0396(03)00020-2.
-
-
-
-
23
-
-
35748951872
-
-
J. Carr, Applications of Centre Manifold Theory, Applied Mathematical Science, vol. 35, Springer, Berlin, 1981.
-
-
-
-
24
-
-
0000242930
-
The asymptotic completeness of inertial manifolds
-
〈http://www.iop.org/EJ/abstract/0951-7715/9/5/013〉
-
Robinson J.C. The asymptotic completeness of inertial manifolds. Nonlinearity 9 (1996) 1325-1340. http://www.iop.org/EJ/abstract/0951-7715/9/5/013 〈http://www.iop.org/EJ/abstract/0951-7715/9/5/013〉
-
(1996)
Nonlinearity
, vol.9
, pp. 1325-1340
-
-
Robinson, J.C.1
-
25
-
-
0011616213
-
Simultaneous normal form and center manifold reduction for random differential equations
-
Perello C., Simo C., and Sola-Morales J. (Eds)
-
Arnold L., and Kedai X. Simultaneous normal form and center manifold reduction for random differential equations. In: Perello C., Simo C., and Sola-Morales J. (Eds). Equadiff-91 (1993) 68-80
-
(1993)
Equadiff-91
, pp. 68-80
-
-
Arnold, L.1
Kedai, X.2
-
26
-
-
35748984386
-
-
A. Papavasiliou, I.G. Kevrekidis, Variance reduction for the equation-free simulation of multiscale stochastic systems, Technical Report, Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK, June 2006.
-
-
-
-
27
-
-
85128858890
-
Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system level tasks
-
Kevrekidis I.G., Gear C.W., Hyman J.M., Kevrekidis P.G., Runborg O., and Theodoropoulos K. Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system level tasks. Commun. Math. Sci. 1 (2003) 715-762
-
(2003)
Commun. Math. Sci.
, vol.1
, pp. 715-762
-
-
Kevrekidis, I.G.1
Gear, C.W.2
Hyman, J.M.3
Kevrekidis, P.G.4
Runborg, O.5
Theodoropoulos, K.6
-
28
-
-
17344387998
-
-
C.W. Gear, J. Li, I.G. Kevrekidis, The gap-tooth method in particle simulations, Phys. Lett. A 316 (2003) 190-195, doi:10.1016/j.physleta.2003.07.004.
-
-
-
-
29
-
-
35748963495
-
General tooth boundary conditions for equation free modelling
-
Roberts A.J., and Kevrekidis I.G. General tooth boundary conditions for equation free modelling. SIAM J. Sci. Comput. 29 4 (2007) 1495-1510
-
(2007)
SIAM J. Sci. Comput.
, vol.29
, Issue.4
, pp. 1495-1510
-
-
Roberts, A.J.1
Kevrekidis, I.G.2
-
31
-
-
0002444942
-
Numerical approximation of random attractors
-
Crauel H., and Gundlach M. (Eds), Springer, Berlin 〈http://www.math.uni-bremen.de/Math-Net/preprints/ohne-metadaten/Report431.ps.gz〉
-
Keller H., and Ochs G. Numerical approximation of random attractors. In: Crauel H., and Gundlach M. (Eds). Stochastic Dynamics (1999), Springer, Berlin. http://www.math.uni-bremen.de/Math-Net/preprints/ohne-metadaten/Report431.ps.gz 〈http://www.math.uni-bremen.de/Math-Net/preprints/ohne-metadaten/Report431.ps.gz〉
-
(1999)
Stochastic Dynamics
-
-
Keller, H.1
Ochs, G.2
-
32
-
-
0031537466
-
-
M. Dellnitz, A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors, Numer. Math. 75 (1997) 293-317, doi:10.1007/s002110050240.
-
-
-
-
33
-
-
35748967245
-
-
A.J. Roberts, Create useful low-dimensional models of complex dynamical systems, Technical Report 〈http://www.sci.usq.edu.au/staff/robertsa/Modelling/〉, 2006.
-
-
-
-
34
-
-
0006107905
-
Stochastic Hopf bifurcation: the effect of colored noise on the bifurcation interval
-
Olarrea J., and Javier de la Rubia F. Stochastic Hopf bifurcation: the effect of colored noise on the bifurcation interval. Phys. Rev. E 53 (1996) 268-271
-
(1996)
Phys. Rev. E
, vol.53
, pp. 268-271
-
-
Olarrea, J.1
Javier de la Rubia, F.2
-
35
-
-
35748964399
-
-
A.J. Roberts, Computer algebra derives normal forms of stochastic differential equations, Technical Report 〈http://eprints.usq.edu.au/archive/00001873〉, 2007.
-
-
-
-
36
-
-
35748939957
-
-
M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions, Dover, New York, 1965.
-
-
-
-
37
-
-
22344456790
-
-
D.J. Higham, P.E. Kloeden, Numerical methods for nonlinear stochastic differential equations with jumps, Numer. Math. 101 (2005) 101-119, doi:10.1007/s00211-005-0611-8.
-
-
-
-
38
-
-
35748972598
-
-
P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Applications of Mathematics, vol. 23, Springer, Berlin, 1992.
-
-
-
-
39
-
-
0001761644
-
A limit theorem for the solutions of differential equations with random right hand sides
-
Khasminskii R.Z. A limit theorem for the solutions of differential equations with random right hand sides. Theor. Probab. Appl. 11 3 (1966) 390-405
-
(1966)
Theor. Probab. Appl.
, vol.11
, Issue.3
, pp. 390-405
-
-
Khasminskii, R.Z.1
|