-
3
-
-
0034357683
-
Stability and random attractors for a reaction-diffusion equation with multiplicative noise
-
Caraballo, T., Langa, J. A., and Robinson, J. C., "Stability and random attractors for a reaction-diffusion equation with multiplicative noise," Discrete Contin. Dyn. Syst. 6, 875-892 (2000).
-
(2000)
Discrete Contin. Dyn. Syst
, vol.6
, pp. 875-892
-
-
Caraballo, T.1
Langa, J.A.2
Robinson, J.C.3
-
4
-
-
0009236990
-
Approximate inertial manifolds of exponential order for semilinear parabolic equations subjected to additive white noise
-
Chueshov, I. D., "Approximate inertial manifolds of exponential order for semilinear parabolic equations subjected to additive white noise," J. Dyn. Differ. Equ. 7, 549-566 (1995).
-
(1995)
J. Dyn. Differ. Equ
, vol.7
, pp. 549-566
-
-
Chueshov, I.D.1
-
5
-
-
0242626901
-
-
Nonlinear Differ. Eq. Appl, NoDEA
-
Chueshov, I. D., Duan, J., and Schmalfuss, B., "Determining functionals for random partial differential equations," Nonlinear Differ. Eq. Appl. (NoDEA) 10, 431-454 (2003).
-
(2003)
Determining functionals for random partial differential equations
, vol.10
, pp. 431-454
-
-
Chueshov, I.D.1
Duan, J.2
Schmalfuss, B.3
-
7
-
-
34548667055
-
Random attractors
-
Crauel, H., Debussche, A., and Flandoli, F., "Random attractors," J. Dyn. Differ. Equ. 9, 307-341 (1997).
-
(1997)
J. Dyn. Differ. Equ
, vol.9
, pp. 307-341
-
-
Crauel, H.1
Debussche, A.2
Flandoli, F.3
-
10
-
-
0346961357
-
Invariant manifolds for stochastic partial differential equations
-
Duan, J., Lu, K., and Schmalfuss, B., "Invariant manifolds for stochastic partial differential equations," Ann. Probab. 31, 2109-2135 (2003).
-
(2003)
Ann. Probab
, vol.31
, pp. 2109-2135
-
-
Duan, J.1
Lu, K.2
Schmalfuss, B.3
-
11
-
-
33748854567
-
Smooth stable and unstable manifolds for stochastic partial differential equations
-
Duan, J., Lu, K., and Schmalfuss, B., "Smooth stable and unstable manifolds for stochastic partial differential equations," J. Dyn. Differ. Equ. 16, 949-972 (2004).
-
(2004)
J. Dyn. Differ. Equ
, vol.16
, pp. 949-972
-
-
Duan, J.1
Lu, K.2
Schmalfuss, B.3
-
13
-
-
38249040922
-
Large diffusivity and asymptotic behavior in parabolic systems
-
Hale, J. K., "Large diffusivity and asymptotic behavior in parabolic systems," J. Math. Anal. Appl. 118, 455-466 (1986).
-
(1986)
J. Math. Anal. Appl
, vol.118
, pp. 455-466
-
-
Hale, J.K.1
-
14
-
-
0042326459
-
-
Science, Bejing/Kluwer Academic, New York
-
Huang, Z. and Yan, J., Introduction to Infinite Dimensional Stochastic Analysis (Science, Bejing/Kluwer Academic, New York, 2000).
-
(2000)
Introduction to Infinite Dimensional Stochastic Analysis
-
-
Huang, Z.1
Yan, J.2
-
15
-
-
0002396872
-
Attractors for stochastic differential equations with nontrivial noise
-
Keller, H. and Schmalfuss, B., "Attractors for stochastic differential equations with nontrivial noise," Bull. Acad. Stiincte Repub. Mold. Mat. 1998(1), 43-54 (1998).
-
(1998)
Bull. Acad. Stiincte Repub. Mold. Mat
, vol.1998
, Issue.1
, pp. 43-54
-
-
Keller, H.1
Schmalfuss, B.2
-
16
-
-
0347348626
-
Pullback attracting inertial manifolds for nonautonomous dynamical systems
-
Koksch, N. and Siegmund, S., "Pullback attracting inertial manifolds for nonautonomous dynamical systems," J. Dyn. Differ. Equ. 14, 889-941 (2002).
-
(2002)
J. Dyn. Differ. Equ
, vol.14
, pp. 889-941
-
-
Koksch, N.1
Siegmund, S.2
-
18
-
-
0035541510
-
Spatial homogeneity and invariant manifolds for damped hyperbolic equations
-
Qin, W. X., "Spatial homogeneity and invariant manifolds for damped hyperbolic equations," ZAMP 52, 990-1016 (2001).
-
(2001)
ZAMP
, vol.52
, pp. 990-1016
-
-
Qin, W.X.1
-
19
-
-
0031099492
-
Low-dimensional modeling of dynamics via computer algebra
-
Roberts, A. J., "Low-dimensional modeling of dynamics via computer algebra," Comput. Phys. Commun. 100, 215-230 (1997).
-
(1997)
Comput. Phys. Commun
, vol.100
, pp. 215-230
-
-
Roberts, A.J.1
-
20
-
-
0000005730
-
Inertial manifold and the cone condition
-
Robinson, J. C., "Inertial manifold and the cone condition," Dyn. Syst. Appl. 2, 311-330 (1993).
-
(1993)
Dyn. Syst. Appl
, vol.2
, pp. 311-330
-
-
Robinson, J.C.1
-
21
-
-
0000242930
-
The asymptotic completeness of inertial manifolds
-
Robinson, J. C., "The asymptotic completeness of inertial manifolds," Nonlinearity 9, 1325-1340 (1996).
-
(1996)
Nonlinearity
, vol.9
, pp. 1325-1340
-
-
Robinson, J.C.1
-
23
-
-
36148951964
-
Inertial manifolds for random differential equations
-
edited by E. Waymire and J. Duan Springer, New York
-
Schmalfuss, B., "Inertial manifolds for random differential equations, in Probability and partial differential equations in modern applied mathematics, The IMA Volumes in Mathematics and its Applications, edited by E. Waymire and J. Duan (Springer, New York, 2005), pp. 213-236.
-
(2005)
Probability and partial differential equations in modern applied mathematics, The IMA Volumes in Mathematics and its Applications
, pp. 213-236
-
-
Schmalfuss, B.1
-
24
-
-
84975976954
-
Trends to spatial homogeneity for semilinear damped equations
-
Math
-
Solà-Morales, J. and València, M., "Trends to spatial homogeneity for semilinear damped equations," Proc. - R. Soc. Edinburgh, Sect. A: Math. 105, 117-126 (1987).
-
(1987)
Proc. - R. Soc. Edinburgh, Sect. A
, vol.105
, pp. 117-126
-
-
Solà-Morales, J.1
València, M.2
|