메뉴 건너뛰기




Volumn 7, Issue 4, 2012, Pages 1663-1677

Business documents analysis using text mining techniques

Author keywords

Business documents analysis; Classification system; System design; Text mining

Indexed keywords

BUSINESS DATA; BUSINESS DOCUMENTS; CLASSIFICATION SYSTEM; CLASSIFIER LEARNING; DATA MINING COMMUNITY; DATA SETS; DESIGN PROCESS; DOCUMENT REPRESENTATION; EBUSINESS; HIDDEN PATTERNS; SYSTEM EVALUATION; TEXT MINING; TEXT MINING TECHNIQUES; TEXT PREPROCESSING; TEXTUAL DOCUMENTS; TOOLS AND TECHNIQUES;

EID: 84868150053     PISSN: 18286003     EISSN: 18286011     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (2)

References (73)
  • 1
    • 84868131017 scopus 로고    scopus 로고
    • UN/CEFACT, Cover Pages 2007
    • UN/CEFACT, Cover Pages, http://xml.coverpages.org/ni2007-04-20-a.html, 2007
    • (2007)
  • 4
    • 0036778910 scopus 로고    scopus 로고
    • Business-to-business data sharing: A source for integration of supply chains
    • G. Stefanson, Business-to-business data sharing: A source for integration of supply chains, Int'l Journal of Production Economics, vol. 75, n. 1-2, pp. 135-146, 2002.
    • (2002) Int'l Journal of Production Economics , vol.75 , Issue.1-2 , pp. 135-146
    • Stefanson, G.1
  • 10
    • 0002442796 scopus 로고    scopus 로고
    • Machine Learning in Automated Text Categorisation
    • F. Sebastiani, Machine Learning in Automated Text Categorisation, ACM Computing Survey (CSUR), vol. 34, n. 1, pp. 1-47, 2002.
    • (2002) ACM Computing Survey (CSUR) , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 17
    • 84868131020 scopus 로고    scopus 로고
    • Unpublished MSc thesis, Department of Computation, UMIST, Manchester
    • F. Troulakis, Text Mining, Unpublished MSc thesis, Department of Computation, UMIST, Manchester, 2000.
    • (2000) Text Mining
    • Troulakis, F.1
  • 19
    • 0028461417 scopus 로고
    • Automated Learning of Decision Rules for Text Categorisation
    • C. Apte, R. Damerau, and S.M. Weiss, Automated Learning of Decision Rules for Text Categorisation, ACM Trans. on Information Systems, vol. 12, n. 3, pp. 233-251, 1994.
    • (1994) ACM Trans. on Information Systems , vol.12 , Issue.3 , pp. 233-251
    • Apte, C.1    Damerau, R.2    Weiss, S.M.3
  • 32
    • 16644402628 scopus 로고    scopus 로고
    • Feature Selection for Text Categorisation on Imbalanced Data
    • Z. Zheng, X. Wu, and R. Srihari, Feature Selection for Text Categorisation on Imbalanced Data, ACM SIGKDD Explorations Newsletter, vol. 6, n. 1, pp. 80-89, 2004.
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 80-89
    • Zheng, Z.1    Wu, X.2    Srihari, R.3
  • 34
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for Feature Subset Selection
    • R. Kohavi and G.H. John, Wrappers for Feature Subset Selection, Artificial Intelligence, vol. 97, n. 1-2, pp. 273-324, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 43
    • 85055298348 scopus 로고
    • Accurate Methods for the Statistics of Surprise and Coincidence
    • T. Dunning, Accurate Methods for the Statistics of Surprise and Coincidence, Computational Linguistics, vol. 19, n. 1, pp. 61-74, 1993.
    • (1993) Computational Linguistics , vol.19 , Issue.1 , pp. 61-74
    • Dunning, T.1
  • 53
    • 0028516598 scopus 로고
    • Automatic Concept Classification of Text from Electronic Meetings
    • H. Chen, P. Hsu, R. Orwig, L. Hoopes, and J.F. Nunamaker, Automatic Concept Classification of Text from Electronic Meetings, Communications of ACM, vol. 37, n. 10, pp. 56-73, 1994.
    • (1994) Communications of ACM , vol.37 , Issue.10 , pp. 56-73
    • Chen, H.1    Hsu, P.2    Orwig, R.3    Hoopes, L.4    Nunamaker, J.F.5
  • 54
    • 27144441097 scopus 로고    scopus 로고
    • Evaluation of Statistical Approaches to Text Categorisation
    • Y. Yang, Evaluation of Statistical Approaches to Text Categorisation, Information Retrieval, vol. 1, n. 1-2, pp. 69-90, 1999.
    • (1999) Information Retrieval , vol.1 , Issue.1-2 , pp. 69-90
    • Yang, Y.1
  • 58
    • 0030285403 scopus 로고    scopus 로고
    • The KDD Process for Extracting Useful Knowledge from Volumes of Data
    • U.M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, The KDD Process for Extracting Useful Knowledge from Volumes of Data, Communication of ACM, vol. 39, n. 11, pp. 27-34, 1996.
    • (1996) Communication of ACM , vol.39 , Issue.11 , pp. 27-34
    • Fayyad, U.M.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 59
    • 10044229782 scopus 로고    scopus 로고
    • Lawrence Erlbaum Associates Publishers
    • N. Ye, The Handbook of Data Mining (Lawrence Erlbaum Associates Publishers, 2003).
    • (2003) The Handbook of Data Mining
    • Ye, N.1
  • 63
    • 84868143393 scopus 로고    scopus 로고
    • Wikipedia
    • Wikipedia, Evaluation Methods in Text Categorisation, http://datamin.ubbcluj.ro/wiki/index.php/Evaluation_methods_in_ text_categorization, 2011
    • (2011) Evaluation Methods in Text Categorisation
  • 64
    • 0001290841 scopus 로고    scopus 로고
    • Glossary of terms
    • R. Kohavi and P. Foster, Glossary of terms, Machine Learning, vol. 30, n. 2-3, pp. 271-274, 1998.
    • (1998) Machine Learning , vol.30 , Issue.2-3 , pp. 271-274
    • Kohavi, R.1    Foster, P.2
  • 65
    • 33748260363 scopus 로고    scopus 로고
    • Gleaner: Creating Ensembles of First-Order Clauses to Improve Recall-Precision Curves
    • M. Goadrich, L. Oliphant, and J. Shavlik, Gleaner: Creating Ensembles of First-Order Clauses to Improve Recall-Precision Curves, Journal of Machine Learning, vol. 64, n. 1-3, pp. 231-261, 2006.
    • (2006) Journal of Machine Learning , vol.64 , Issue.1-3 , pp. 231-261
    • Goadrich, M.1    Oliphant, L.2    Shavlik, J.3
  • 72
    • 84868143394 scopus 로고    scopus 로고
    • Commius
    • Commius, Community-based Interoperability Utility for SMEs, http://www.research.softeco.it/Data/Sites/1/media/docs/commius/ deliverables/COMM-WP3-T3.1-TUV-D3.1.2-v2.0-Commius%20Architecture.pdf
    • Community-based Interoperability Utility for SMEs


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.