-
2
-
-
0347243182
-
Nonlinear Component Analysis as a Kernel Eigenvalue Problem
-
Schölkopf B, Smola AJ, Müller KR, (1998) Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation 10: 1299-1319.
-
(1998)
Neural Computation
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.J.2
Müller, K.R.3
-
3
-
-
0035272287
-
An Introduction to Kernel-Based Learning Algorithms
-
Müller KR, Mika S, Rätsch G, Tsuda K, Schölkopf B, (2001) An Introduction to Kernel-Based Learning Algorithms. IEEE Neural Networks 12: 181-201.
-
(2001)
IEEE Neural Networks
, vol.12
, pp. 181-201
-
-
Müller, K.R.1
Mika, S.2
Rätsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
5
-
-
34047196763
-
A Novel SVM Geometric Algorithm Based on Reduced Convex Hulls
-
Mavroforakis ME, Sdralis M, Theodoridis S, (2006) A Novel SVM Geometric Algorithm Based on Reduced Convex Hulls. Pattern Recognition, International Conference on 2: 564-568.
-
(2006)
Pattern Recognition, International Conference on
, vol.2
, pp. 564-568
-
-
Mavroforakis, M.E.1
Sdralis, M.2
Theodoridis, S.3
-
6
-
-
0033640690
-
A Fast Iterative Nearest Point Algorithm for Support Vector Machine Classifier Design
-
Keerthi SS, Shevade SK, Bhattacharyya C, Murthy KRK, (2000) A Fast Iterative Nearest Point Algorithm for Support Vector Machine Classifier Design. IEEE Transactions on Neural Networks 11: 124-136.
-
(2000)
IEEE Transactions on Neural Networks
, vol.11
, pp. 124-136
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
7
-
-
33646451825
-
-
Bordes A, Bottou L (2005) The huller: A simple and efficient online SVM. In: Machine Learning: ECML 2005. Lecture Notes in Artificial Intelligence, LNAI 3720. Heidelberg: Springer Verlag. pp. 505-512. Available: http://leon.bottou.org/papers/bordes-bottou-2005. Accessed 2012 Oct 5.
-
-
-
-
8
-
-
78649966463
-
AD-SVMs: A Light Extension of SVMs for Multicategory Classification
-
Nanculef R, Concha C, Allende H, Candel D, Moraga C, (2009) AD-SVMs: A Light Extension of SVMs for Multicategory Classification. Int J Hybrid Intell Syst 6: 69-79.
-
(2009)
Int J Hybrid Intell Syst
, vol.6
, pp. 69-79
-
-
Nanculef, R.1
Concha, C.2
Allende, H.3
Candel, D.4
Moraga, C.5
-
9
-
-
82455212637
-
A New Scatter-Based Multi-Class Support Vector Machine
-
Beijing, China, September
-
Jenssen R, Kloft M, Sonnenburg S, Zien A, Müller KR (2011) A New Scatter-Based Multi-Class Support Vector Machine. In: Proceedings of IEEE Workshop on Machine Learning for Signal Processing. Beijing, China, September 18-21.
-
(2011)
Proceedings of IEEE Workshop on Machine Learning for Signal Processing
, pp. 18-21
-
-
Jenssen, R.1
Kloft, M.2
Sonnenburg, S.3
Zien, A.4
Müller, K.R.5
-
11
-
-
59149094573
-
Prototype Classification: Insights from Machine Learning
-
Graf ABA, Bousquet O, Rätsch G, Schölkopf B, (2009) Prototype Classification: Insights from Machine Learning. Neural Computation 21: 272-300.
-
(2009)
Neural Computation
, vol.21
, pp. 272-300
-
-
Graf, A.B.A.1
Bousquet, O.2
Rätsch, G.3
Schölkopf, B.4
-
12
-
-
0001849156
-
Multicategory Classification by Support Vector Machines
-
Bredensteiner EJ, Bennett KP, (1999) Multicategory Classification by Support Vector Machines. Comput Optim Appl 12: 53-79.
-
(1999)
Comput Optim Appl
, vol.12
, pp. 53-79
-
-
Bredensteiner, E.J.1
Bennett, K.P.2
-
15
-
-
2142775432
-
Multicategory Support Vector Machines: Theory and Application to the Classification of Microarray Data and Satellite Radiance Data
-
Lee Y, Lin Y, Wahba G, (2004) Multicategory Support Vector Machines: Theory and Application to the Classification of Microarray Data and Satellite Radiance Data. Journal of the American Statistical Association 99: 67-81.
-
(2004)
Journal of the American Statistical Association
, vol.99
, pp. 67-81
-
-
Lee, Y.1
Lin, Y.2
Wahba, G.3
-
16
-
-
0010442827
-
On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines
-
Crammer K, Singer Y, (2001) On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines. Journal of Machine Learning Research 2: 265-292.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 265-292
-
-
Crammer, K.1
Singer, Y.2
-
17
-
-
85162005592
-
-
Bengio S, Weston J, Grangier D (2010) Label Embedding Trees for Large Multi-Class Tasks. In: Lafferty J, Williams CKI, Shawe-Taylor J, Zemel RS, Culotta A, editors. Advances in Neural Information Processing Systems. Available: http://books.nips.cc/nips23.html. Accessed 2012 Oct 5.
-
-
-
-
19
-
-
85089251671
-
Comparison of Classifier Methods: a Case Study in Handwritten Digit Recognition
-
Bottou L, Cortes C, Denker JS, Drucker H, Guyon I, et al. (1994) Comparison of Classifier Methods: a Case Study in Handwritten Digit Recognition. In: ICPR94. pp. 77-82.
-
(1994)
ICPR94
, pp. 77-82
-
-
Bottou, L.1
Cortes, C.2
Denker, J.S.3
Drucker, H.4
Guyon, I.5
-
20
-
-
79952056311
-
Visualization of Nonlinear Kernel Models in Neuroimaging by Sensitivity Maps
-
Rasmussen PM, Madsen KH, Lund TE, Hansen LK, (2011) Visualization of Nonlinear Kernel Models in Neuroimaging by Sensitivity Maps. Neuro Image 55: 1120-1131.
-
(2011)
Neuro Image
, vol.55
, pp. 1120-1131
-
-
Rasmussen, P.M.1
Madsen, K.H.2
Lund, T.E.3
Hansen, L.K.4
-
21
-
-
27144489164
-
A Tutorial on Support Vector Machines for Pattern Recognition
-
Burges CJC, (1998) A Tutorial on Support Vector Machines for Pattern Recognition. Knowledge Discovery and Data Mining 2: 121-167.
-
(1998)
Knowledge Discovery and Data Mining
, vol.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
25
-
-
0003120218
-
Fast Training of Support Vector Machines using Sequential Minimal Optimization
-
In: Schölkopf B, Burges C, Smola A, editors Cambridge, MA: MIT Press
-
Platt JC (1999) Fast Training of Support Vector Machines using Sequential Minimal Optimization. In: Schölkopf B, Burges C, Smola A, editors, Advances in Kernel Methods - Support Vector Learning. Cambridge, MA: MIT Press. pp. 185-208.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 185-208
-
-
Platt, J.C.1
-
26
-
-
0002714543
-
Making Large-Scale SVM Learning Practical
-
In: Schölkopf B, Burges C, Smola A, editors Cambridge, MA: MIT Press
-
Joachims T (1999) Making Large-Scale SVM Learning Practical. In: Schölkopf B, Burges C, Smola A, editors, Advances in Kernel Methods - Support Vector Learning. Cambridge, MA: MIT Press. pp. 169-184.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
27
-
-
0032594954
-
Input space vs. feature space in kernel-based methods
-
Schölkopf B, Mika S, Burges CJC, Knirsch P, Müller KR, et al. (1999) Input space vs. feature space in kernel-based methods. IEEE Transactions on Neural Networks 10: 1000-1017.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, pp. 1000-1017
-
-
Schölkopf, B.1
Mika, S.2
Burges, C.J.C.3
Knirsch, P.4
Müller, K.R.5
-
29
-
-
84918441630
-
Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition
-
Cover TM, (1965) Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition. Electronic Computers, IEEE Transactions on EC-14: 326-334.
-
(1965)
Electronic Computers, IEEE Transactions on
, vol.EC-14
, pp. 326-334
-
-
Cover, T.M.1
-
31
-
-
33947245952
-
Value Regularization and Fenchel Duality
-
Rifkin R, Lippert RA, (2007) Value Regularization and Fenchel Duality. J Mach Learn Res 8: 441-479.
-
(2007)
J Mach Learn Res
, vol.8
, pp. 441-479
-
-
Rifkin, R.1
Lippert, R.A.2
-
32
-
-
84878021505
-
-
Chang CC, Lin CJ (2001) LIBSVM: A Library for Support Vector Machines. Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Accessed 2012 Oct 5.
-
-
-
-
33
-
-
29144499905
-
Working Set Selection Using the Second Order Information for Training SVM
-
Fan RE, Chen PH, Lin CJ, (2005) Working Set Selection Using the Second Order Information for Training SVM. Journal of Machine Learning Research 6: 1889-1918.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1889-1918
-
-
Fan, R.E.1
Chen, P.H.2
Lin, C.J.3
-
34
-
-
77954666305
-
The SHOGUN Machine Learning Toolbox
-
Sonnenburg S, Rätsch G, Henschel S, Widmer C, Behr J, et al. (2010) The SHOGUN Machine Learning Toolbox. Journal of Machine Learning Research 11 (Jun) pp. 1799-1802.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 1799-1802
-
-
Sonnenburg, S.1
Rätsch, G.2
Henschel, S.3
Widmer, C.4
Behr, J.5
-
35
-
-
0036505670
-
A Comparison of Methods for Multiclass Support Vector Machines
-
Hsu CW, Lin CJ, (2002) A Comparison of Methods for Multiclass Support Vector Machines. IEEE Transactions on Neural Networks 13: 415-425.
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, pp. 415-425
-
-
Hsu, C.W.1
Lin, C.J.2
-
37
-
-
0032203257
-
Gradient-Based Learning Applied to Document Recognition
-
Lecun Y, Bottou L, Bengio Y, Haffner P, (1998) Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE 86: 2278-2324.
-
(1998)
Proceedings of the IEEE
, vol.86
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
38
-
-
84878021207
-
-
Jenssen R, Kloft M, Zien A, Sonnenburg S, Müller KR (2009) A Multi-Class Support Vector Machine based on Scatter Criteria. Technical Report 014-2009, Technische Universit at Berlin. Available: http://www.eecs.tu-berlin.de/fileadmin/f4/TechReports/2009/tr-2009-14.pdf. Accessed 2012 Oct 5.
-
-
-
-
40
-
-
20744451888
-
Geometric Representation of High Dimension Low Sample Size Data
-
Hall P, Marron JS, Neeman A, (2005) Geometric Representation of High Dimension Low Sample Size Data. J R Statist Soc B 67: 427-444.
-
(2005)
J R Statist Soc B
, vol.67
, pp. 427-444
-
-
Hall, P.1
Marron, J.S.2
Neeman, A.3
-
41
-
-
77952561415
-
Weighted Distance Weighted Discrimination and Its Asymptotic Properties
-
Qiao X, Zhang HH, Liu Y, Todd MJ, et al. (2010) Weighted Distance Weighted Discrimination and Its Asymptotic Properties. Journal of the American Statistical Association 105: 401-414.
-
(2010)
Journal of the American Statistical Association
, vol.105
, pp. 401-414
-
-
Qiao, X.1
Zhang, H.H.2
Liu, Y.3
Todd, M.J.4
-
42
-
-
84932617705
-
Learning Generative Visual Models from Few Training Examples: an Incremental Bayesian Approach Tested on 101 Object Categories
-
Fei-Fei L, Fergus R, Perona P, (2004) Learning Generative Visual Models from Few Training Examples: an Incremental Bayesian Approach Tested on 101 Object Categories. Computer Vision and Pattern Recognition Workshop 12: 178.
-
(2004)
Computer Vision and Pattern Recognition Workshop
, vol.12
, pp. 178
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
|