-
1
-
-
61849124694
-
Wafer-scale reduced graphene oxide films for nanomechanical devices
-
J.T. Robinson, M. Zalalutdinov, J.W. Baldwin, E.S. Snow, Z. Wei, and P. Sheehan Wafer-scale reduced graphene oxide films for nanomechanical devices Nano Lett 8 2008 3441 3445
-
(2008)
Nano Lett
, vol.8
, pp. 3441-3445
-
-
Robinson, J.T.1
Zalalutdinov, M.2
Baldwin, J.W.3
Snow, E.S.4
Wei, Z.5
Sheehan, P.6
-
2
-
-
68649099010
-
Strain engineering of graphene's electronic structure
-
V.M. Pereira, and A.H. Castro Neto Strain engineering of graphene's electronic structure Phys Rev Lett 103 2009 046801 46804
-
(2009)
Phys Rev Lett
, vol.103
, pp. 046801-46804
-
-
Pereira, V.M.1
Castro Neto, A.H.2
-
3
-
-
33847364563
-
The structure of suspended graphene sheets
-
DOI 10.1038/nature05545, PII NATURE05545
-
J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth The structure of suspended graphene sheets Nature 446 2007 60 63 (Pubitemid 46348040)
-
(2007)
Nature
, vol.446
, Issue.7131
, pp. 60-63
-
-
Meyer, J.C.1
Geim, A.K.2
Katsnelson, M.I.3
Novoselov, K.S.4
Booth, T.J.5
Roth, S.6
-
4
-
-
58049208431
-
Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening
-
Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, and Z.X. Shen Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening ACS Nano 2 2008 2301 2305
-
(2008)
ACS Nano
, vol.2
, pp. 2301-2305
-
-
Ni, Z.H.1
Yu, T.2
Lu, Y.H.3
Wang, Y.Y.4
Feng, Y.P.5
Shen, Z.X.6
-
5
-
-
84864717273
-
Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes
-
T.W. Chamberlain, J. Biskupek, G.A. Rance, A. Chuvilin, T.J. Alexander, and E. Bichoutskaia Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes ACS Nano 6 2012 3943 3953
-
(2012)
ACS Nano
, vol.6
, pp. 3943-3953
-
-
Chamberlain, T.W.1
Biskupek, J.2
Rance, G.A.3
Chuvilin, A.4
Alexander, T.J.5
Bichoutskaia, E.6
-
6
-
-
76749161483
-
Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels
-
A.L. Elías, A.R. Botello-Méndez, D. Meneses- Rodríguez, V.J. González, D. Ramírez-González, and L. Ci Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels Nano Lett 10 2010 366 372
-
(2010)
Nano Lett
, vol.10
, pp. 366-372
-
-
Elías, A.L.1
Botello-Méndez, A.R.2
Meneses-Rodríguez, D.3
González, V.J.4
Ramírez-González, D.5
Ci, L.6
-
7
-
-
59649099717
-
Large-scale pattern growth of graphene films for stretchable transparent electrodes
-
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, and K.S. Kim Large-scale pattern growth of graphene films for stretchable transparent electrodes Nature 457 2009 706 710
-
(2009)
Nature
, vol.457
, pp. 706-710
-
-
Kim, K.S.1
Zhao, Y.2
Jang, H.3
Lee, S.Y.4
Kim, J.M.5
Kim, K.S.6
-
8
-
-
77955585046
-
Strain effects in graphene and graphene nanoribbons: The underlying mechanism
-
Y. Li, X. Jiang, Z. Liu, and Z. Liu Strain effects in graphene and graphene nanoribbons: the underlying mechanism Nano Res 3 2010 545 556
-
(2010)
Nano Res
, vol.3
, pp. 545-556
-
-
Li, Y.1
Jiang, X.2
Liu, Z.3
Liu, Z.4
-
9
-
-
77954056783
-
Strain effect on quantum conductance of graphene nanoribbons from maximally localized Wannier functions
-
R. Rasuli, H. Rafii-Tabar, and A.I. Zad Strain effect on quantum conductance of graphene nanoribbons from maximally localized Wannier functions Phys Rev B 81 2010 125409 125413
-
(2010)
Phys Rev B
, vol.81
, pp. 125409-125413
-
-
Rasuli, R.1
Rafii-Tabar, H.2
Zad, A.I.3
-
10
-
-
77952334517
-
Transport properties of corrugated graphene nanoribbons
-
Z. Yu, L.Z. Sun, C.X. Zhang, and J.X. Zhong Transport properties of corrugated graphene nanoribbons Appl Phys Lett 96 2010 173101 173103
-
(2010)
Appl Phys Lett
, vol.96
, pp. 173101-173103
-
-
Yu, Z.1
Sun, L.Z.2
Zhang, C.X.3
Zhong, J.X.4
-
11
-
-
71749103432
-
Electron transport of folded graphene nanoribbons
-
Y.E. Xie, Y.P. Chen, and J. Zhong Electron transport of folded graphene nanoribbons J Appl Phys 106 2009 103714 103717
-
(2009)
J Appl Phys
, vol.106
, pp. 103714-103717
-
-
Xie, Y.E.1
Chen, Y.P.2
Zhong, J.3
-
12
-
-
77956447836
-
Edges bring new dimension to graphene nanoribbons
-
D. Gunlycke, J. Li, J.W. Mintmire, and C.T. White Edges bring new dimension to graphene nanoribbons Nano Lett 10 2010 3638 3642
-
(2010)
Nano Lett
, vol.10
, pp. 3638-3642
-
-
Gunlycke, D.1
Li, J.2
Mintmire, J.W.3
White, C.T.4
-
13
-
-
79960551780
-
Electronic properties of twisted armchair graphene nanoribbons
-
A. Sadrzadeh, M. Hua, and B.I. Yakobson Electronic properties of twisted armchair graphene nanoribbons Appl Phys Lett 99 2011 013102 13104
-
(2011)
Appl Phys Lett
, vol.99
, pp. 013102-13104
-
-
Sadrzadeh, A.1
Hua, M.2
Yakobson, B.I.3
-
14
-
-
34547635051
-
Electronic spin transport and spin precession in single graphene layers at room temperature
-
DOI 10.1038/nature06037, PII NATURE06037
-
N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, and B.J. van Wees Electronic spin transport and spin precession in single graphene layers at room temperature Nature (London) 448 2007 571 574 (Pubitemid 47206939)
-
(2007)
Nature
, vol.448
, Issue.7153
, pp. 571-574
-
-
Tombros, N.1
Jozsa, C.2
Popinciuc, M.3
Jonkman, H.T.4
Van Wees, B.J.5
-
15
-
-
85008030079
-
Graphene spin valve devices
-
E.W. Hill, A.K. Geim, K. Novoselov, F. Schedin, and P. Blake Graphene spin valve devices IEEE Trans Magn 42 2006 2694 2696
-
(2006)
IEEE Trans Magn
, vol.42
, pp. 2694-2696
-
-
Hill, E.W.1
Geim, A.K.2
Novoselov, K.3
Schedin, F.4
Blake, P.5
-
16
-
-
77956422342
-
Very large magnetoresistance in graphene nanoribbons
-
J. Bai, R. Cheng, F. Xiu, L. Liao, M. Wang, and A. Shailos Very large magnetoresistance in graphene nanoribbons Nat Nanotechnol 5 2010 655 659
-
(2010)
Nat Nanotechnol
, vol.5
, pp. 655-659
-
-
Bai, J.1
Cheng, R.2
Xiu, F.3
Liao, L.4
Wang, M.5
Shailos, A.6
-
17
-
-
46749156195
-
Prediction of very large values of magnetoresistance in a graphene nanoribbon device
-
W.Y. Kim, and K.S. Kim Prediction of very large values of magnetoresistance in a graphene nanoribbon device Nat Nanotech 3 2008 408 412
-
(2008)
Nat Nanotech
, vol.3
, pp. 408-412
-
-
Kim, W.Y.1
Kim, K.S.2
-
18
-
-
64949187309
-
Giant magnetoresistance in ultrasmall graphene based devices
-
F. Munoz-Rojas, J. Fernandez-Rossier, and J.J. Palacios Giant magnetoresistance in ultrasmall graphene based devices Phys Rev Lett 102 2009 136810 136813
-
(2009)
Phys Rev Lett
, vol.102
, pp. 136810-136813
-
-
Munoz-Rojas, F.1
Fernandez-Rossier, J.2
Palacios, J.J.3
-
19
-
-
79953705672
-
Graphene spin-valve device grown epitaxially on the Ni(1 1 1) substrate: A first principles study
-
Y. Cho, Y.C. Choi, and K.S. Kim Graphene spin-valve device grown epitaxially on the Ni(1 1 1) substrate: a first principles study J Phys Chem C 115 2011 6019 6023
-
(2011)
J Phys Chem C
, vol.115
, pp. 6019-6023
-
-
Cho, Y.1
Choi, Y.C.2
Kim, K.S.3
-
20
-
-
33751110207
-
Half-metallic graphene nanoribbons
-
DOI 10.1038/nature05180, PII NATURE05180
-
Y.-W. Son, M.L. Cohen, and S.G. Louie Half-metallic graphene nanoribbons Nature 444 2006 347 349 (Pubitemid 44764106)
-
(2006)
Nature
, vol.444
, Issue.7117
, pp. 347-349
-
-
Son, Y.-W.1
Cohen, M.L.2
Louie, S.G.3
-
21
-
-
3342899450
-
Two theorems on the Hubbard model
-
E.H. Lieb Two theorems on the Hubbard model Phys Rev Lett 62 1989 1201 1204
-
(1989)
Phys Rev Lett
, vol.62
, pp. 1201-1204
-
-
Lieb, E.H.1
-
22
-
-
80855128070
-
Graphene magnet realized by hydrogenated graphene nanopore arrays
-
K. Tada, J. Haruyama, H.X. Yang, M. Chshiev, T. Matsui, and H. Fukuyama Graphene magnet realized by hydrogenated graphene nanopore arrays Appl Phys Lett 99 2011 183111 183113
-
(2011)
Appl Phys Lett
, vol.99
, pp. 183111-183113
-
-
Tada, K.1
Haruyama, J.2
Yang, H.X.3
Chshiev, M.4
Matsui, T.5
Fukuyama, H.6
-
23
-
-
84857754361
-
Twisting graphene nanoribbons into carbon nanotubes
-
O.O. Kit, T. Tallinen, L. Mahadevan, J. Timonen, and P. Koskinen Twisting graphene nanoribbons into carbon nanotubes Phys Rev B 85 2012 085428 85436
-
(2012)
Phys Rev B
, vol.85
, pp. 085428-85436
-
-
Kit, O.O.1
Tallinen, T.2
Mahadevan, L.3
Timonen, J.4
Koskinen, P.5
-
24
-
-
0037171091
-
-
J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, and P. Ordejon J Phys: Condens Matter 14 2002 2745 2779
-
(2002)
J Phys: Condens Matter
, vol.14
, pp. 2745-2779
-
-
Soler, J.M.1
Artacho, E.2
Gale, J.D.3
Garcia, A.4
Junquera, J.5
Ordejon, P.6
-
25
-
-
0025431237
-
A straightforward method for generating soft transferable pseudopotentials
-
N. Troullier, and J.L. Martins A straightforward method for generating soft transferable pseudopotentials Solid State Commun 74 1990 613 616
-
(1990)
Solid State Commun
, vol.74
, pp. 613-616
-
-
Troullier, N.1
Martins, J.L.2
-
26
-
-
26144450583
-
Self-interaction correction to density-functional approximations for many-electron systems
-
J.P. Perdew, and A. Zunger Self-interaction correction to density-functional approximations for many-electron systems Phys Rev B 23 1981 5048 5079
-
(1981)
Phys Rev B
, vol.23
, pp. 5048-5079
-
-
Perdew, J.P.1
Zunger, A.2
-
27
-
-
0037091644
-
We used the software-package SIESTA-3.0-b as distributed by the SIESTA group (http://www.uam.es/siesta), which implements the method described in density-functional method for nonequilibrium electron transport
-
M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro We used the software-package SIESTA-3.0-b as distributed by the SIESTA group (http://www.uam.es/siesta), which implements the method described in density-functional method for nonequilibrium electron transport Phys Rev B 65 2002 165401 165417
-
(2002)
Phys Rev B
, vol.65
, pp. 165401-165417
-
-
Brandbyge, M.1
Mozos, J.-L.2
Ordejon, P.3
Taylor, J.4
Stokbro, K.5
-
28
-
-
38849153450
-
Magnetic correlations at graphene edges: Basis for novel spintronics devices
-
O. Yazyev, and M.I. Katsnelson Magnetic correlations at graphene edges: basis for novel spintronics devices Phys Rev Lett 100 2008 047209 47212
-
(2008)
Phys Rev Lett
, vol.100
, pp. 047209-47212
-
-
Yazyev, O.1
Katsnelson, M.I.2
-
30
-
-
79751473393
-
Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility
-
N. Wei, L. Xu, H. Wang, and J. Zheng Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility Nanotechnology 22 2011 105705 105715
-
(2011)
Nanotechnology
, vol.22
, pp. 105705-105715
-
-
Wei, N.1
Xu, L.2
Wang, H.3
Zheng, J.4
-
31
-
-
40749140712
-
Giant intrinsic carrier mobilities in graphene and its bilayer
-
S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, and J.A. Jaszczak Giant intrinsic carrier mobilities in graphene and its bilayer Phys Rev Lett 100 2008 016602 16605
-
(2008)
Phys Rev Lett
, vol.100
, pp. 016602-16605
-
-
Morozov, S.V.1
Novoselov, K.S.2
Katsnelson, M.I.3
Schedin, F.4
Elias, D.C.5
Jaszczak, J.A.6
|