메뉴 건너뛰기




Volumn 39, Issue 11, 2012, Pages 2453-2473

Sample size for estimating a binomial proportion: Comparison of different methods

Author keywords

Binomial proportion; Confidence intervals; Coverage probability; Expected length; Sample size

Indexed keywords


EID: 84868094589     PISSN: 02664763     EISSN: 13600532     Source Type: Journal    
DOI: 10.1080/02664763.2012.713919     Document Type: Article
Times cited : (20)

References (36)
  • 1
    • 0034554907 scopus 로고    scopus 로고
    • Simple and effective confidence intervals for proportions and differences of proportions result from adding 2 successes and 2 failures
    • A. Agresti and B. Caffo, Simple and effective confidence intervals for proportions and differences of proportions result from adding 2 successes and 2 failures, Amer. Statist. 54 (2000), pp. 280-288.
    • (2000) Amer. Statist , vol.54 , pp. 280-288
    • Agresti, A.1    Caffo, B.2
  • 2
    • 0032377357 scopus 로고    scopus 로고
    • Approximate is better than 'exact' for interval estimation of binomial proportions
    • A. Agresti and B. Coull, Approximate is better than 'exact' for interval estimation of binomial proportions, Amer. Statist. 52 (1998), pp. 119-126.
    • (1998) Amer. Statist , vol.52 , pp. 119-126
    • Agresti, A.1    Coull, B.2
  • 3
    • 20744447020 scopus 로고    scopus 로고
    • Frequentist performance of Bayesian confidence intervals for comparing proportions in 2 × 2 contingency tables
    • A. Agresti and Y. Min, Frequentist performance of Bayesian confidence intervals for comparing proportions in 2 × 2 contingency tables, Biometrics 61 (2005), pp. 515-523.
    • (2005) Biometrics , vol.61 , pp. 515-523
    • Agresti, A.1    Min, Y.2
  • 4
    • 0001243836 scopus 로고
    • Transformations of Poisson, binomial and negative-binomial data
    • F. Anscombe, Transformations of Poisson, binomial and negative-binomial data, Biometrika 35 (1948), pp. 246-254.
    • (1948) Biometrika , vol.35 , pp. 246-254
    • Anscombe, F.1
  • 6
    • 0000460102 scopus 로고    scopus 로고
    • Interval estimation for a binomial proportion
    • L. Brown, T. Cai, and A. DasGupta, Interval estimation for a binomial proportion, Statist. Sci. 16 (2001), pp. 101-133.
    • (2001) Statist. Sci , vol.16 , pp. 101-133
    • Brown, L.1    Cai, T.2    Dasgupta, A.3
  • 7
    • 0036101724 scopus 로고    scopus 로고
    • Confidence intervals for a binomial proportion and edgeworth expansions
    • L. Brown, T. Cai, and A. DasGupta, Confidence intervals for a binomial proportion and edgeworth expansions, Ann. Statist. 30 (2002), pp. 160-201.
    • (2002) Ann. Statist , vol.30 , pp. 160-201
    • Brown, L.1    Cai, T.2    Dasgupta, A.3
  • 9
    • 77950787949 scopus 로고    scopus 로고
    • A Bayesian approach to zero-numerator problems using hierarchical models
    • Z. Chen and M. McGee, A Bayesian approach to zero-numerator problems using hierarchical models, J. Data Sci. 6 (2008), pp. 261-268.
    • (2008) J. Data Sci , vol.6 , pp. 261-268
    • Chen, Z.1    McGee, M.2
  • 10
    • 0035995702 scopus 로고    scopus 로고
    • The saw-toothed behavior of power versus sample size and software solutions: Single binomial proportion using exact methods
    • M. Chernick and C. Liu, The saw-toothed behavior of power versus sample size and software solutions: Single binomial proportion using exact methods, Amer. Statist. 56 (2002), pp. 149-155.
    • (2002) Amer. Statist , vol.56 , pp. 149-155
    • Chernick, M.1    Liu, C.2
  • 11
    • 0001072895 scopus 로고
    • The use of confidence or fiducial limits illustrated in the case of the binomial
    • C. Clopper and E. Pearson, The use of confidence or fiducial limits illustrated in the case of the binomial, Biometrika 26 (1934), pp. 404-413.
    • (1934) Biometrika , vol.26 , pp. 404-413
    • Clopper, C.1    Pearson, E.2
  • 12
    • 2942644937 scopus 로고    scopus 로고
    • Bayesian sample size determination for prevalence and diagnostic test studies in the absence of a gold standard test
    • N. Dendukuri, E. Rahme, P. Belisle, and L. Joseph, Bayesian sample size determination for prevalence and diagnostic test studies in the absence of a gold standard test, Biometrics 60 (2004), pp. 388-397.
    • (2004) Biometrics , vol.60 , pp. 388-397
    • Dendukuri, N.1    Rahme, E.2    Belisle, P.3    Joseph, L.4
  • 13
    • 22044453957 scopus 로고    scopus 로고
    • Sample size calculation should be performed for design accuracy in diagnostic test studies
    • A. Flahault, M. Cadilhac, and G. Thomas, Sample size calculation should be performed for design accuracy in diagnostic test studies, J. Clin. Epidemiol. 58 (2005), pp. 859-863.
    • (2005) J. Clin. Epidemiol , vol.58 , pp. 859-863
    • Flahault, A.1    Cadilhac, M.2    Thomas, G.3
  • 14
    • 25444522228 scopus 로고    scopus 로고
    • Modified exact sample size for a binomial proportion with special emphasis on diagnostic test parameter estimation
    • G. Fosgate, Modified exact sample size for a binomial proportion with special emphasis on diagnostic test parameter estimation, Stat. Med. 24 (2005), pp. 2857-2866.
    • (2005) Stat. Med , vol.24 , pp. 2857-2866
    • Fosgate, G.1
  • 15
    • 0037680376 scopus 로고    scopus 로고
    • Estimating with confidence, in Statistics with Confidence. Confidence Intervals and Statistical Guidelines
    • D. Altman, D. Machin, T. Bryant, and M. Gardner, eds, London
    • M. Gardner and D. Altman, Estimating with confidence, in Statistics with Confidence. Confidence Intervals and Statistical Guidelines, D. Altman, D. Machin, T. Bryant, and M. Gardner, eds., BMJ Books, London, 2000, pp. 3-5.
    • (2000) BMJ Books , pp. 3-5
    • Gardner, M.1    Altman, D.2
  • 16
    • 0030903282 scopus 로고    scopus 로고
    • Bayesian and mixed Bayesian/likelihood criteria for sample size determination
    • L. Joseph, R. Berger, and P. Belisle, Bayesian and mixed Bayesian/likelihood criteria for sample size determination, Stat. Med. 16 (1997), pp. 769-781.
    • (1997) Stat. Med , vol.16 , pp. 769-781
    • Joseph, L.1    Berger, R.2    Belisle, P.3
  • 17
    • 0002335698 scopus 로고
    • Sample size calculations for binomial proportions via highest posterior density intervals
    • L. Joseph, D. Wolfson, and R. Berger, Sample size calculations for binomial proportions via highest posterior density intervals, Statistician 44 (1995), pp. 143-154.
    • (1995) Statistician , vol.44 , pp. 143-154
    • Joseph, L.1    Wolfson, D.2    Berger, R.3
  • 18
    • 0030842727 scopus 로고    scopus 로고
    • Safety evaluation and confidence intervals when the number of observed events is small or zero
    • B. Jovanovic and R. Zalenski, Safety evaluation and confidence intervals when the number of observed events is small or zero, Ann. Emerg. Med. 30 (1997), pp. 301-306.
    • (1997) Ann. Emerg. Med , vol.30 , pp. 301-306
    • Jovanovic, B.1    Zalenski, R.2
  • 19
    • 36549024062 scopus 로고    scopus 로고
    • Some properties of the exact and score methods for binomial proportion and sample size calculation
    • K. Krishnamoorthy and J. Peng, Some properties of the exact and score methods for binomial proportion and sample size calculation, Comm. Statist. Simulation Comput. 36 (2007), pp. 1171-1186.
    • (2007) Comm. Statist. Simulation Comput , vol.36 , pp. 1171-1186
    • Krishnamoorthy, K.1    Peng, J.2
  • 20
    • 0022673634 scopus 로고
    • Sample size for bounding small proportions
    • E. Kron, Sample size for bounding small proportions, Biometrics 42 (1986), pp. 213-216.
    • (1986) Biometrics , vol.42 , pp. 213-216
    • Kron, E.1
  • 21
    • 0036160899 scopus 로고    scopus 로고
    • Sample size determination for constructing a constant width confidence interval for a binomial success probability
    • W. Liu and B. Bailey, Sample size determination for constructing a constant width confidence interval for a binomial success probability, Statist. Probab. Lett. 56 (2002), pp. 1-5.
    • (2002) Statist. Probab. Lett , vol.56 , pp. 1-5
    • Liu, W.1    Bailey, B.2
  • 22
    • 70449429256 scopus 로고    scopus 로고
    • Bayesian sample size determination for binomial proportions
    • C. M'Lan, L. Joseph, and D. Wolfson, Bayesian sample size determination for binomial proportions, Bayesian Anal. 3 (2008), pp. 269-296.
    • (2008) Bayesian Anal , vol.3 , pp. 269-296
    • M'Lan, C.1    Joseph, L.2    Wolfson, D.3
  • 23
    • 0032580320 scopus 로고    scopus 로고
    • Two-sided confidence intervals for the single proportion: Comparison of seven methods
    • R. Newcombe, Two-sided confidence intervals for the single proportion: Comparison of seven methods, Stat. Med. 17 (1998), pp. 857-872.
    • (1998) Stat. Med , vol.17 , pp. 857-872
    • Newcombe, R.1
  • 24
    • 79953012378 scopus 로고    scopus 로고
    • Measures of location for confidence intervals for proportions
    • R. Newcombe, Measures of location for confidence intervals for proportions, Comm. Statist. Theory Methods 40 (2011), pp. 1743-1767.
    • (2011) Comm. Statist. Theory Methods , vol.40 , pp. 1743-1767
    • Newcombe, R.1
  • 25
    • 84868146893 scopus 로고    scopus 로고
    • A discussion of binomial interval estimators on the boundary
    • J. Olivier and W. May, A discussion of binomial interval estimators on the boundary, J. Miss. Acad. Sci. 52 (2007), pp. 178-183.
    • (2007) J. Miss. Acad. Sci , vol.52 , pp. 178-183
    • Olivier, J.1    May, W.2
  • 27
    • 0037189766 scopus 로고    scopus 로고
    • Approximate confidence intervals for one proportion and difference of two proportions
    • Pan, Approximate confidence intervals for one proportion and difference of two proportions, Comput. Statist. Data Anal. 40 (2002), pp. 143-157.
    • (2002) Comput. Statist. Data Anal , vol.40 , pp. 143-157
  • 28
    • 84868134819 scopus 로고    scopus 로고
    • On the coverage probability of the Clopper-Pearson confidence interval
    • ENST Bretagne, France
    • D. Pastor, On the coverage probability of the Clopper-Pearson confidence interval, Tech. Rep., ENST Bretagne, France, 2007.
    • (2007) Tech. Rep
    • Pastor, D.1
  • 29
    • 16544376648 scopus 로고    scopus 로고
    • Sample size for improved binomial confidence intervals
    • W. Piegorsch, Sample size for improved binomial confidence intervals, Comput. Statist. Data Anal. 46 (2004), pp. 309-316.
    • (2004) Comput. Statist. Data Anal , vol.46 , pp. 309-316
    • Piegorsch, W.1
  • 30
    • 72649099602 scopus 로고    scopus 로고
    • Interval estimates for a binomial proportion: Comparison of twenty methods
    • A. Pires and C. Amado, Interval estimates for a binomial proportion: Comparison of twenty methods, REVSTAT 6 (2008), pp. 165-197.
    • (2008) REVSTAT , vol.6 , pp. 165-197
    • Pires, A.1    Amado, C.2
  • 31
    • 0032979261 scopus 로고    scopus 로고
    • Statistical inference by confidence intervals: Issues of interpretation and utilization
    • J. Sim and N. Reid, Statistical inference by confidence intervals: Issues of interpretation and utilization, Phys. Ther. 79 (1999), pp. 186-195.
    • (1999) Phys. Ther , vol.79 , pp. 186-195
    • Sim, J.1    Reid, N.2
  • 32
    • 39049108737 scopus 로고    scopus 로고
    • A comparison of Bayes-Laplace, Jeffreys, and other priors: The case of zero events
    • F. Tuyl, R. Gerlach, and K. Mengersen, A comparison of Bayes-Laplace, Jeffreys, and other priors: The case of zero events, Amer. Statist. 62 (2008), pp. 40-44.
    • (2008) Amer. Statist , vol.62 , pp. 40-44
    • Tuyl, F.1    Gerlach, R.2    Mengersen, K.3
  • 33
    • 0027233743 scopus 로고
    • Confidence intervals for a binomial proportion
    • S. Vollset, Confidence intervals for a binomial proportion, Stat. Med. 12 (1993), pp. 809-824.
    • (1993) Stat. Med , vol.12 , pp. 809-824
    • Vollset, S.1
  • 34
    • 18144428758 scopus 로고    scopus 로고
    • Evaluation criteria for discrete confidence intervals: Beyond coverage and length
    • P. Vos and S. Hudson, Evaluation criteria for discrete confidence intervals: Beyond coverage and length, Amer. Statist. 59 (2005), pp. 137-142.
    • (2005) Amer. Statist , vol.59 , pp. 137-142
    • Vos, P.1    Hudson, S.2
  • 35
    • 59849105766 scopus 로고    scopus 로고
    • Exact average coverage probabilities and confidence coefficients of confidence intervals for discrete distributions
    • H. Wang, Exact average coverage probabilities and confidence coefficients of confidence intervals for discrete distributions, Statist. Comput. 19 (2009), pp. 139-148.
    • (2009) Statist. Comput , vol.19 , pp. 139-148
    • Wang, H.1
  • 36
    • 0036003715 scopus 로고    scopus 로고
    • The role of informative priors in zero-numerator problems: Being conservative versus being candid
    • R. Winkler, J. Smith, and D. Frayback, The role of informative priors in zero-numerator problems: Being conservative versus being candid, Amer. Statist. 56 (2002), pp. 1-4.
    • (2002) Amer. Statist , vol.56 , pp. 1-4
    • Winkler, R.1    Smith, J.2    Frayback, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.