메뉴 건너뛰기




Volumn 75, Issue 11, 2012, Pages 1475-1485

Authentication of bee pollen grains in bright-field microscopy by combining one-class classification techniques and image processing

Author keywords

Classification; Computer vision; Microscopic imaging; Outliers detection; Pollen grains

Indexed keywords

AUTHENTICATION; IMAGE CLASSIFICATION;

EID: 84868004563     PISSN: 1059910X     EISSN: 10970029     Source Type: Journal    
DOI: 10.1002/jemt.22091     Document Type: Article
Times cited : (34)

References (50)
  • 1
    • 0037143140 scopus 로고    scopus 로고
    • Neural network classification and novelty detection
    • Augusteijn M, Folkert B. 2002. Neural network classification and novelty detection. Int J Remote Sens 23: 2891-2902.
    • (2002) Int J Remote Sens , vol.23 , pp. 2891-2902
    • Augusteijn, M.1    Folkert, B.2
  • 3
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti R. 1994. Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Networks 5: 537-550.
    • (1994) IEEE Trans Neural Networks , vol.5 , pp. 537-550
    • Battiti, R.1
  • 6
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley AP. 1997. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 30: 1145-1159.
    • (1997) Pattern Recogn , vol.30 , pp. 1145-1159
    • Bradley, A.P.1
  • 7
    • 0032375671 scopus 로고    scopus 로고
    • Nearest neighbor clutter removal for estimating features in spatial point processes
    • Byers S, Raftery A. 1998. Nearest neighbor clutter removal for estimating features in spatial point processes. J Am Statist Assoc 93: 577-584.
    • (1998) J Am Statist Assoc , vol.93 , pp. 577-584
    • Byers, S.1    Raftery, A.2
  • 12
    • 33645326241 scopus 로고    scopus 로고
    • Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy
    • Chen X, Zhou X, Wong S. 2006b. Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy. IEEE Trans Biomed Eng 53: 762-766.
    • (2006) IEEE Trans Biomed Eng , vol.53 , pp. 762-766
    • Chen, X.1    Zhou, X.2    Wong, S.3
  • 13
    • 84860841448 scopus 로고    scopus 로고
    • Discernment of bee pollen loads using computer vision and one-class classification techniques
    • Chica M, Campoy P. 2012. Discernment of bee pollen loads using computer vision and one-class classification techniques. J Food Eng 112: 50-59.
    • (2012) J Food Eng , vol.112 , pp. 50-59
    • Chica, M.1    Campoy, P.2
  • 15
    • 0141797880 scopus 로고    scopus 로고
    • A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data
    • D. Barbará and S. Jajodia, Eds. Kluwer Academics. Boston, USA.
    • Eskin E, Arnold A, Prerau M, Portnoy L, Stolfo S. 2002. A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data. D. Barbará and S. Jajodia, Eds. In: Applications of Data Mining in Computer Security. Kluwer Academics. Boston, USA. pp. 78-100.
    • (2002) Applications of Data Mining in Computer Security , pp. 78-100
    • Eskin, E.1    Arnold, A.2    Prerau, M.3    Portnoy, L.4    Stolfo, S.5
  • 18
    • 27644532699 scopus 로고    scopus 로고
    • Using one-class and two-class SVMs for multiclass image annotation
    • Goh K, Chang E, Li B. 2005. Using one-class and two-class SVMs for multiclass image annotation. IEEE Trans Knowl Data Eng 17: 1333-1346.
    • (2005) IEEE Trans Knowl Data Eng , vol.17 , pp. 1333-1346
    • Goh, K.1    Chang, E.2    Li, B.3
  • 19
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A. 2003. An introduction to variable and feature selection. J Mach Learn Res 3: 1157-1182.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 20
    • 10844268926 scopus 로고    scopus 로고
    • Automatic segmentation of diatom images for classification
    • Jalba A, Wilkinson M, Roerdink J. 2004. Automatic segmentation of diatom images for classification. Microsc Res Tech 65: 72-85.
    • (2004) Microsc Res Tech , vol.65 , pp. 72-85
    • Jalba, A.1    Wilkinson, M.2    Roerdink, J.3
  • 24
    • 10944224185 scopus 로고    scopus 로고
    • Towards automation of palynology 2: The use of texture measures and neural networks analysis for automated identification of optical images of pollen grains
    • Li P, Treloar WJ, Flenley JR, Empson L. 2004. Towards automation of palynology 2: The use of texture measures and neural networks analysis for automated identification of optical images of pollen grains. J Q Sci 19: 755-762.
    • (2004) J Q Sci , vol.19 , pp. 755-762
    • Li, P.1    Treloar, W.J.2    Flenley, J.R.3    Empson, L.4
  • 27
    • 0010142578 scopus 로고
    • One-class classifier networks for target recognition applications
    • International Neural Network Society, Portland, USA.
    • Moya M, Koch M, Hostetler L. 1993. One-class classifier networks for target recognition applications. In: Proceedings on World Congress on Neural Networks, International Neural Network Society, Portland, USA. pp. 797-801.
    • (1993) Proceedings on World Congress on Neural Networks , pp. 797-801
    • Moya, M.1    Koch, M.2    Hostetler, L.3
  • 28
    • 0018306059 scopus 로고
    • A threshold selection method from grey-level histograms
    • Otsu N. 1979. A threshold selection method from grey-level histograms. IEEE Trans Syst Man Cybern 9: 62-66.
    • (1979) IEEE Trans Syst Man Cybern , vol.9 , pp. 62-66
    • Otsu, N.1
  • 29
    • 29144443664 scopus 로고    scopus 로고
    • Minority report in fraud detection: Classification of skewed data
    • ACM, New York, USA.
    • Phua C, Alahakoon D, Lee V. 2004. Minority report in fraud detection: Classification of skewed data. In: SIGKDD Explorer Newsletter, ACM, New York, USA. pp. 50-59.
    • (2004) SIGKDD Explorer Newsletter , pp. 50-59
    • Phua, C.1    Alahakoon, D.2    Lee, V.3
  • 33
    • 0036709275 scopus 로고    scopus 로고
    • Constructing boosting algorithms from SVMs: An application to one-class classification
    • Ratsch G, Mika S, Scholkopf B, Muller K. 2002. Constructing boosting algorithms from SVMs: An application to one-class classification. IEEE Trans Pattern Anal Mach Intell 24: 1184-1199.
    • (2002) IEEE Trans Pattern Anal Mach Intell , vol.24 , pp. 1184-1199
    • Ratsch, G.1    Mika, S.2    Scholkopf, B.3    Muller, K.4
  • 34
    • 58649112814 scopus 로고    scopus 로고
    • Multifocus image fusion using the log-Gabor transform and a multisize windows technique
    • Redondo R, Sroubek F, Fischer S, Cristóbal G. 2009. Multifocus image fusion using the log-Gabor transform and a multisize windows technique. Inform Fusion 10: 163-171.
    • (2009) Inform Fusion , vol.10 , pp. 163-171
    • Redondo, R.1    Sroubek, F.2    Fischer, S.3    Cristóbal, G.4
  • 35
    • 0031169206 scopus 로고    scopus 로고
    • Outliers in statistical pattern recognition and an application to automatic chromosome classification
    • Ritter G, Gallegos M. 1997. Outliers in statistical pattern recognition and an application to automatic chromosome classification. Pattern Recogn Lett 18: 525-539.
    • (1997) Pattern Recogn Lett , vol.18 , pp. 525-539
    • Ritter, G.1    Gallegos, M.2
  • 37
    • 0036624542 scopus 로고    scopus 로고
    • Automated pollen recognition using 3D volume images from fluorescence microscopy
    • Ronneberger O, Schultz E, Burkhardt H. 2002. Automated pollen recognition using 3D volume images from fluorescence microscopy. Aerobiologia 18: 107-115.
    • (2002) Aerobiologia , vol.18 , pp. 107-115
    • Ronneberger, O.1    Schultz, E.2    Burkhardt, H.3
  • 38
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire R, Singer Y. 1999. Improved boosting algorithms using confidence-rated predictions. Mach Learn 37: 297-336.
    • (1999) Mach Learn , vol.37 , pp. 297-336
    • Schapire, R.1    Singer, Y.2
  • 41
    • 85164050334 scopus 로고    scopus 로고
    • One-class classification; concept-learning in the absence of counterexamples, Ph.D. thesis, Delft University of Technology.
    • Tax D. 2001. One-class classification; concept-learning in the absence of counterexamples, Ph.D. thesis, Delft University of Technology.
    • (2001)
    • Tax, D.1
  • 43
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax D, Duin R. 2004. Support vector data description. Mach Learn 54: 45-66.
    • (2004) Mach Learn , vol.54 , pp. 45-66
    • Tax, D.1    Duin, R.2
  • 44
    • 10944269024 scopus 로고    scopus 로고
    • Towards automation of palynology 1: Analysis of pollen shape and ornamentation using simple geometric measures, derived from scanning microscope images
    • Treloar WJ, Taylor GE, Flenley JR. 2004. Towards automation of palynology 1: Analysis of pollen shape and ornamentation using simple geometric measures, derived from scanning microscope images. J Q Sci 19: 745-754.
    • (2004) J Q Sci , vol.19 , pp. 745-754
    • Treloar, W.J.1    Taylor, G.E.2    Flenley, J.R.3
  • 45
    • 42049114520 scopus 로고    scopus 로고
    • Automated recognition system to classify subcellular protein localizations in images of different cell lines acquired by different imaging systems
    • Tsai Y, Chung I, Simpson J, Lee M, Hsiung C, Chiu T, Kao L, Chiu T, Lin C, Lin W, Liang S, Lin C. 2008. Automated recognition system to classify subcellular protein localizations in images of different cell lines acquired by different imaging systems. Microsc Res Tech 71: 305-314.
    • (2008) Microsc Res Tech , vol.71 , pp. 305-314
    • Tsai, Y.1    Chung, I.2    Simpson, J.3    Lee, M.4    Hsiung, C.5    Chiu, T.6    Kao, L.7    Chiu, T.8    Lin, C.9    Lin, W.10    Liang, S.11    Lin, C.12
  • 46
    • 48949097033 scopus 로고    scopus 로고
    • Automatic segmentation of unstained living cells in bright-field microscope images. Advances in Mass Data Analysis of Images and Signals in Medicine, Biotechnology, Chemistry and Food Industry
    • Tscherepanow M, Zöllner F, Hillebrand M, Kummert F. 2008. Automatic segmentation of unstained living cells in bright-field microscope images. Advances in Mass Data Analysis of Images and Signals in Medicine, Biotechnology, Chemistry and Food Industry. Lect Notes Comput Sci 5108: 158-172.
    • (2008) Lect Notes Comput Sci , vol.5108 , pp. 158-172
    • Tscherepanow, M.1    Zöllner, F.2    Hillebrand, M.3    Kummert, F.4
  • 49
    • 0001175680 scopus 로고    scopus 로고
    • Image segmentation using deformable models
    • Handbook of Medical Imaging,. Nicosia, Cyprus: SPI Press.
    • Xu D, Pham J, Prince J. 2000. Image segmentation using deformable models. In: Handbook of Medical Imaging, vol. 2. Nicosia, Cyprus: SPI Press. pp. 129-174.
    • (2000) , vol.2 , pp. 129-174
    • Xu, D.1    Pham, J.2    Prince, J.3
  • 50
    • 10944241460 scopus 로고    scopus 로고
    • Towards automation of palynology 3: Pollen pattern recognition using Gabor transforms and digital moments
    • Zhang Y, Fountain DW, Hodgson RM, Flenley JR, Gunetileke S. 2004. Towards automation of palynology 3: Pollen pattern recognition using Gabor transforms and digital moments. J Q Sci 19: 763-768.
    • (2004) J Q Sci , vol.19 , pp. 763-768
    • Zhang, Y.1    Fountain, D.W.2    Hodgson, R.M.3    Flenley, J.R.4    Gunetileke, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.