-
1
-
-
47349112859
-
Data mining techniques for building fault-proneness models in telecom java software
-
nov.
-
E. Arisholm, L. C. Briand, and M. Fuglerud. Data mining techniques for building fault-proneness models in telecom java software. In Software Reliability, 2007. ISSRE '07. The 18th IEEE International Symposium on, pages 215 -224, nov. 2007.
-
(2007)
Software Reliability, 2007, ISSRE '07, The 18th IEEE International Symposium on
, pp. 215-224
-
-
Arisholm, E.1
Briand, L.C.2
Fuglerud, M.3
-
2
-
-
71649110371
-
A systematic and comprehensive investigation of methods to build and evaluate fault prediction models
-
E. Arisholm, L. C. Briand, and E. B. Johannessen. A systematic and comprehensive investigation of methods to build and evaluate fault prediction models. Journal of Systems and Software, 83(1):2-17, 2010.
-
(2010)
Journal of Systems and Software
, vol.83
, Issue.1
, pp. 2-17
-
-
Arisholm, E.1
Briand, L.C.2
Johannessen, E.B.3
-
3
-
-
0033931867
-
Assessing the accuracy of prediction algorithms for classification: An overview
-
P. Baldi, S. Brunak, Y. Chauvin, C. Andersen, and H. Nielsen. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics, 16(5):412-424, 2000.
-
(2000)
Bioinformatics
, vol.16
, Issue.5
, pp. 412-424
-
-
Baldi, P.1
Brunak, S.2
Chauvin, Y.3
Andersen, C.4
Nielsen, H.5
-
4
-
-
27144531570
-
A study of the behavior of several methods for balancing machine learning training data
-
G. Batista, R. Prati, and M. Monard. A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explorations Newsletter, 6(1):20-29, 2004.
-
(2004)
ACM SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.1
Prati, R.2
Monard, M.3
-
6
-
-
36049047317
-
An artificial immune system approach for fault prediction in object-oriented software
-
june
-
C. Catal, B. Diri, and B. Ozumut. An artificial immune system approach for fault prediction in object-oriented software. In Dependability of Computer Systems, 2007. DepCoS-RELCOMEX '07. 2nd International Conference on, pages 238 -245, june 2007.
-
(2007)
Dependability of Computer Systems, 2007. DepCoS-RELCOMEX '07. 2nd International Conference on
, pp. 238-245
-
-
Catal, C.1
Diri, B.2
Ozumut, B.3
-
7
-
-
27144549260
-
Editorial: Special issue on learning from imbalanced data sets
-
N. V. Chawla, N. Japkowicz, and A. Kotcz. Editorial: special issue on learning from imbalanced data sets. SIGKDD Explorations, 6(1):1-6, 2004.
-
(2004)
SIGKDD Explorations
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Kotcz, A.3
-
8
-
-
79952446954
-
Research synthesis in software engineering: A tertiary study
-
May
-
D. S. Cruzes and T. Dybå. Research synthesis in software engineering: A tertiary study. Inf. Softw. Technol., 53:440-455, May 2011.
-
(2011)
Inf. Softw. Technol.
, vol.53
, pp. 440-455
-
-
Cruzes, D.S.1
Dybå, T.2
-
9
-
-
57649221639
-
Predicting fault proneness of classes trough a multiobjective particle swarm optimization algorithm
-
A. B. de Carvalho, A. Pozo, S. Vergilio, and A. Lenz. Predicting fault proneness of classes trough a multiobjective particle swarm optimization algorithm. In Tools with Artificial Intelligence, 2008. ICTAI '08. 20th IEEE International Conference on, volume 2, pages 387-394, 2008.
-
(2008)
Tools with Artificial Intelligence, 2008, ICTAI '08, 20th IEEE International Conference on
, vol.2
, pp. 387-394
-
-
De Carvalho, A.B.1
Pozo, A.2
Vergilio, S.3
Lenz, A.4
-
10
-
-
77549086028
-
A symbolic fault-prediction model based on multiobjective particle swarm optimization
-
A. B. de Carvalho, A. Pozo, and S. R. Vergilio. A symbolic fault-prediction model based on multiobjective particle swarm optimization. Journal of Systems and Software, 83(5):868-882, 2010.
-
(2010)
Journal of Systems and Software
, vol.83
, Issue.5
, pp. 868-882
-
-
De Carvalho, A.B.1
Pozo, A.2
Vergilio, S.R.3
-
11
-
-
0036041633
-
An empirical evaluation of fault-proneness models
-
ICSE '02, New York, NY, USA, ACM
-
G. Denaro and M. Pezzè. An empirical evaluation of fault-proneness models. In Proceedings of the 24th International Conference on Software Engineering, ICSE '02, pages 241-251, New York, NY, USA, 2002. ACM.
-
(2002)
Proceedings of the 24th International Conference on Software Engineering
, pp. 241-251
-
-
Denaro, G.1
Pezzè, M.2
-
12
-
-
40749135790
-
Predicting defect-prone software modules using support vector machines
-
K. O. Elish and M. O. Elish. Predicting defect-prone software modules using support vector machines. Journal of Systems and Software, 81(5):649 - 660, 2008.
-
(2008)
Journal of Systems and Software
, vol.81
, Issue.5
, pp. 649-660
-
-
Elish, K.O.1
Elish, M.O.2
-
13
-
-
84867693980
-
Further thoughts on precision
-
D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson. Further thoughts on precision. In Evaluation and Assessment in Software Engineering (EASE), 2011.
-
(2011)
Evaluation and Assessment in Software Engineering (EASE)
-
-
Gray, D.1
Bowes, D.2
Davey, N.3
Sun, Y.4
Christianson, B.5
-
14
-
-
84862310939
-
A systematic review of fault prediction performance in software engineering
-
T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A systematic review of fault prediction performance in software engineering. Software Engineering, IEEE Transactions on, PP(99):1, 2011.
-
(2011)
Software Engineering, IEEE Transactions on
, Issue.99
, pp. 1
-
-
Hall, T.1
Beecham, S.2
Bowes, D.3
Gray, D.4
Counsell, S.5
-
16
-
-
52549091028
-
Techniques for evaluating fault prediction models
-
Y. Jiang, B. Cukic, and Y. Ma. Techniques for evaluating fault prediction models. Empirical Software Engineering, 13(5):561-595, 2008.
-
(2008)
Empirical Software Engineering
, vol.13
, Issue.5
, pp. 561-595
-
-
Jiang, Y.1
Cukic, B.2
Ma, Y.3
-
17
-
-
47949103719
-
The effects of over and under sampling on fault-prone module detection
-
sept.
-
Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto, and K. Matsumoto. The effects of over and under sampling on fault-prone module detection. In Empirical Software Engineering and Measurement, 2007. ESEM 2007. First International Symposium on, pages 196 -204, sept. 2007.
-
(2007)
Empirical Software Engineering and Measurement, 2007, ESEM 2007, First International Symposium on
, pp. 196-204
-
-
Kamei, Y.1
Monden, A.2
Matsumoto, S.3
Kakimoto, T.4
Matsumoto, K.5
-
18
-
-
77949789640
-
Early software fault prediction using real time defect data
-
accept
-
A. Kaur, P. S. Sandhu, and A. S. Bra. Early software fault prediction using real time defect data. In Machine Vision, 2009. ICMV '09. Second International Conference on, pages 242-245. accept, 2009.
-
(2009)
Machine Vision, 2009, ICMV '09, Second International Conference on
, pp. 242-245
-
-
Kaur, A.1
Sandhu, P.S.2
Bra, A.S.3
-
19
-
-
3543063465
-
Comparative assessment of software quality classification techniques: An empirical case study
-
T. Khoshgoftaar and N. Seliya. Comparative assessment of software quality classification techniques: An empirical case study. Empirical Software Engineering, 9(3):229-257, 2004.
-
(2004)
Empirical Software Engineering
, vol.9
, Issue.3
, pp. 229-257
-
-
Khoshgoftaar, T.1
Seliya, N.2
-
20
-
-
28244461468
-
Building effective defect-prediction models in practice
-
IEEE, nov.-dec.
-
A. Koru and H. Liu. Building effective defect-prediction models in practice. Software, IEEE, 22(6):23 - 29, nov.-dec. 2005.
-
(2005)
Software
, vol.22
, Issue.6
, pp. 23-29
-
-
Koru, A.1
Liu, H.2
-
21
-
-
48049102737
-
A two-step model for defect density estimation
-
aug.
-
O. Kutlubay, B. Turhan, and A. Bener. A two-step model for defect density estimation. In Software Engineering and Advanced Applications, 2007. 33rd EUROMICRO Conference on, pages 322 -332, aug. 2007.
-
(2007)
Software Engineering and Advanced Applications, 2007, 33rd EUROMICRO Conference on
, pp. 322-332
-
-
Kutlubay, O.1
Turhan, B.2
Bener, A.3
-
22
-
-
49349089233
-
Benchmarking classification models for software defect prediction: A proposed framework and novel findings
-
july-aug.
-
S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking classification models for software defect prediction: A proposed framework and novel findings. Software Engineering, IEEE Transactions on, 34(4):485 -496, july-aug. 2008.
-
(2008)
Software Engineering, IEEE Transactions on
, vol.34
, Issue.4
, pp. 485-496
-
-
Lessmann, S.1
Baesens, B.2
Mues, C.3
Pietsch, S.4
-
24
-
-
34548245485
-
Problems with precision: A response to comments on 'data mining static code attributes to learn defect predictors'
-
sept.
-
T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald. Problems with precision: A response to "comments on 'data mining static code attributes to learn defect predictors'". Software Engineering, IEEE Transactions on, 33(9):637 -640, sept. 2007.
-
(2007)
Software Engineering, IEEE Transactions on
, vol.33
, Issue.9
, pp. 637-640
-
-
Menzies, T.1
Dekhtyar, A.2
Distefano, J.3
Greenwald, J.4
-
25
-
-
33845782503
-
Data mining static code attributes to learn defect predictors
-
jan.
-
T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes to learn defect predictors. Software Engineering, IEEE Transactions on, 33(1):2 -13, jan. 2007.
-
(2007)
Software Engineering, IEEE Transactions on
, vol.33
, Issue.1
, pp. 2-13
-
-
Menzies, T.1
Greenwald, J.2
Frank, A.3
-
27
-
-
34648835118
-
Empirical analysis of software fault content and fault proneness using bayesian methods
-
oct.
-
G. Pai and J. Dugan. Empirical analysis of software fault content and fault proneness using bayesian methods. Software Engineering, IEEE Transactions on, 33(10):675 -686, oct. 2007.
-
(2007)
Software Engineering, IEEE Transactions on
, vol.33
, Issue.10
, pp. 675-686
-
-
Pai, G.1
Dugan, J.2
-
28
-
-
0036086035
-
Software quality prediction using median-adjusted class labels
-
N. Pizzi, A. Summers, and W. Pedrycz. Software quality prediction using median-adjusted class labels. In Neural Networks, 2002. IJCNN '02. Proceedings of the 2002 International Joint Conference on, volume 3, pages 2405 -2409, 2002.
-
(2002)
Neural Networks, 2002, IJCNN '02, Proceedings of the 2002 International Joint Conference on
, vol.3
, pp. 2405-2409
-
-
Pizzi, N.1
Summers, A.2
Pedrycz, W.3
-
29
-
-
37849044610
-
Analyzing software quality with limited fault-proneness defect data
-
oct.
-
N. Seliya, T. Khoshgoftaar, and S. Zhong. Analyzing software quality with limited fault-proneness defect data. In High-Assurance Systems Engineering, 2005. HASE 2005. Ninth IEEE International Symposium on, pages 89 -98, oct. 2005.
-
(2005)
High-Assurance Systems Engineering, 2005, HASE 2005, Ninth IEEE International Symposium on
, pp. 89-98
-
-
Seliya, N.1
Khoshgoftaar, T.2
Zhong, S.3
-
30
-
-
67349201689
-
Using pre & post-processing methods to improve binding site predictions
-
Y. Sun, C. Castellano, M. Robinson, R. Adams, A. Rust, and N. Davey. Using pre & post-processing methods to improve binding site predictions. Pattern Recognition, 42(9):1949-1958, 2009.
-
(2009)
Pattern Recognition
, vol.42
, Issue.9
, pp. 1949-1958
-
-
Sun, Y.1
Castellano, C.2
Robinson, M.3
Adams, R.4
Rust, A.5
Davey, N.6
-
31
-
-
64049099247
-
Data mining source code for locating software bugs: A case study in telecommunication industry
-
B. Turhan, G. Kocak, and A. Bener. Data mining source code for locating software bugs: A case study in telecommunication industry. Expert Systems with Applications, 36(6):9986-9990, 2009.
-
(2009)
Expert Systems with Applications
, vol.36
, Issue.6
, pp. 9986-9990
-
-
Turhan, B.1
Kocak, G.2
Bener, A.3
-
33
-
-
78649782445
-
Evolutionary optimization of software quality modeling with multiple repositories
-
L. Yi, T. M. Khoshgoftaar, and N. Seliya. Evolutionary optimization of software quality modeling with multiple repositories. Software Engineering, IEEE Transactions on, 36(6):852-864, 2010.
-
(2010)
Software Engineering, IEEE Transactions on
, vol.36
, Issue.6
, pp. 852-864
-
-
Yi, L.1
Khoshgoftaar, T.M.2
Seliya, N.3
-
34
-
-
80054055536
-
Failure is a four-letter word: A parody in empirical research
-
1-5:7, New York, NY, USA, ACM
-
A. Zeller, T. Zimmermann, and C. Bird. Failure is a four-letter word: a parody in empirical research. In Proceedings of the 7th International Conference on Predictive Models in Software Engineering, Promise '11, pages 5:1-5:7, New York, NY, USA, 2011. ACM.
-
(2011)
Proceedings of the 7th International Conference on Predictive Models in Software Engineering, Promise '11
, pp. 5
-
-
Zeller, A.1
Zimmermann, T.2
Bird, C.3
-
35
-
-
34548253429
-
Comments on data mining static code attributes to learn defect predictors
-
sept.
-
H. Zhang and X. Zhang. Comments on "data mining static code attributes to learn defect predictors". Software Engineering, IEEE Transactions on, 33(9):635 -637, sept. 2007.
-
(2007)
Software Engineering, IEEE Transactions on
, vol.33
, Issue.9
, pp. 635-637
-
-
Zhang, H.1
Zhang, X.2
-
36
-
-
33947174112
-
Empirical analysis of object-oriented design metrics for predicting high and low severity faults Software Engineering
-
oct.
-
Y. Zhou and H. Leung. Empirical analysis of object-oriented design metrics for predicting high and low severity faults. Software Engineering, IEEE Transactions on, 32(10):771 -789, oct. 2006.
-
(2006)
IEEE Transactions on
, vol.32
, Issue.10
, pp. 771-789
-
-
Zhou, Y.1
Leung, H.2
|