메뉴 건너뛰기




Volumn 53, Issue 1 SUPPL., 2010, Pages 85-90

Semi-Supervised Classification based on Gaussian Mixture Model for remote imagery

Author keywords

EM algorithms; Gaussian Mixture Model; Image classification; Remote sensing; Semi Supervised Classification

Indexed keywords

IMAGE CLASSIFICATION; LABELED DATA; REMOTE SENSING; SUPPORT VECTOR MACHINES;

EID: 84867563029     PISSN: 16747321     EISSN: 18691900     Source Type: Journal    
DOI: 10.1007/s11431-010-3211-5     Document Type: Article
Times cited : (8)

References (15)
  • 1
    • 33745456231 scopus 로고    scopus 로고
    • Technical Report Computer Science. Madison: University of Wisconsin-Madison
    • Zhu X. Semi-supervised learning literature survey. Technical Report Computer Science. Madison: University of Wisconsin-Madison, 2007
    • (2007) Semi-supervised Learning Literature Survey
    • Zhu, X.1
  • 4
    • 84898963451 scopus 로고    scopus 로고
    • Probabilistic modeling for face orientation discrimination: Learning from labeled and unlabeled data
    • Baluja S. Probabilistic modeling for face orientation discrimination: Learning from labeled and unlabeled data. Adv Neural Inf Proc Syst, 1999. 854-860
    • (1999) Adv Neural Inf Proc Syst , pp. 854-860
    • Baluja, S.1
  • 6
    • 33947369065 scopus 로고    scopus 로고
    • Face recognition by humans: Nineteen results all computer vision researchers should know about
    • Sinha P. Face recognition by humans: Nineteen results all computer vision researchers should know about. Proc IEEE, 2006, 94(11): 1948
    • (2006) Proc IEEE , vol.94 , Issue.11 , pp. 1948
    • Sinha, P.1
  • 7
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for semisupervised classification of remote-sensing images
    • Bruzzone L, Chi M, Marconcini M. A novel transductive SVM for semisupervised classification of remote-sensing images. IEEE T Geosci Remote Sens, 2006, 44(11): 3363
    • (2006) IEEE T Geosci Remote Sens , vol.44 , Issue.11 , pp. 3363
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 8
    • 47849095828 scopus 로고    scopus 로고
    • Semi-supervised image classification with Laplacian support vector machines
    • Gomez-Chova L. Semi-supervised image classification with Laplacian support vector machines. IEEE Geosci Remote Sens Lett, 2008, 5(3): 336-340
    • (2008) IEEE Geosci Remote Sens Lett , vol.5 , Issue.3 , pp. 336-340
    • Gomez-Chova, L.1
  • 10
    • 33845884299 scopus 로고    scopus 로고
    • A semi-supervised learning method for remote sensing data mining
    • Vatsavai R, Shekhar S, Burk T. A semi-supervised learning method for remote sensing data mining. In: ICTAI, 2005. 207-211
    • (2005) ICTAI , pp. 207-211
    • Vatsavai, R.1    Shekhar, S.2    Burk, T.3
  • 13
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc B, 1977, 39(1): 1-38
    • (1977) J Roy Stat Soc B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 14
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
    • Shahshahani B, Landgrebe D. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE T Geosci Remote, 1994, 32(5): 1087-1095
    • (1994) IEEE T Geosci Remote , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.1    Landgrebe, D.2
  • 15
    • 0036327090 scopus 로고    scopus 로고
    • Using prior probabilities in decision-tree classification of remotely sensed data
    • McIver D, Friedl M. Using prior probabilities in decision-tree classification of remotely sensed data. Remote Sens Environ, 2002, 81(2): 253-261
    • (2002) Remote Sens Environ , vol.81 , Issue.2 , pp. 253-261
    • McIver, D.1    Friedl, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.