메뉴 건너뛰기




Volumn 63, Issue 9, 2012, Pages 2948-2952

A process singular value recognition based recursive PCA approach to mode-transition process monitoring

Author keywords

Monitoring; Multi mode process; Recursive PCA; Singular value recognition

Indexed keywords

MODE TRANSITIONS; MULTIMODES; ON-LINE PROCESS; PCA METHOD; RECOGNITION ALGORITHM; RECURSIVE PCA; SINGULAR VALUES; TE PROCESS; TRANSITION PHASIS;

EID: 84867407794     PISSN: 04381157     EISSN: None     Source Type: Journal    
DOI: 10.3969/j.issn.0438-1157.2012.09.044     Document Type: Article
Times cited : (5)

References (15)
  • 1
    • 84867424336 scopus 로고    scopus 로고
    • Researches on continuous process performance monitoring and fault diagnosis based on PCA
    • Wuxi: Jiangnan University
    • Zhang Xinrong. Researches on continuous process performance monitoring and fault diagnosis based on PCA[D]. Wuxi: Jiangnan University, 2008
    • (2008)
    • Zhang, X.1
  • 2
    • 58449121508 scopus 로고    scopus 로고
    • Researches on performance monitoring and fault diagnosis for process industry based on data-driven technique
    • Hangzhou: Zhejiang University
    • Guo Ming. Researches on performance monitoring and fault diagnosis for process industry based on data-driven technique[D]. Hangzhou: Zhejiang University, 2004
    • (2004)
    • Guo, M.1
  • 3
    • 2542546557 scopus 로고    scopus 로고
    • Process improvement methodology based on multivariate statistical analysis methods
    • Young-Hak Lee, Kwang Gi Min, Chonghun Han, et al. Process improvement methodology based on multivariate statistical analysis methods[J]. Control Engineering Practice, 2004, 12: 945-961
    • (2004) Control Engineering Practice , vol.12 , pp. 945-961
    • Lee, Y.-H.1    Min, K.G.2    Han, C.3
  • 4
    • 84867435099 scopus 로고    scopus 로고
    • Study of monitoring and fault diagnosis in industrial process based on the theory of multivariate statistics
    • Harbin: Harbin University of Science and Technology
    • Liu Shaobo. Study of monitoring and fault diagnosis in industrial process based on the theory of multivariate statistics [D]. Harbin: Harbin University of Science and Technology, 2008
    • (2008)
    • Liu, S.1
  • 5
    • 84867434630 scopus 로고    scopus 로고
    • Study of multivariate statistical method based on probabilistic PCA on the process monitoring
    • Wuxi: Jiangnan University
    • Yang Peiwu. Study of multivariate statistical method based on probabilistic PCA on the process monitoring [D]. Wuxi: Jiangnan University, 2008
    • (2008)
    • Yang, P.1
  • 6
    • 84867411750 scopus 로고    scopus 로고
    • Multivariate statistical process monitoring and safe operating
    • Xu Yongmao, Zhao Shijian. Multivariate statistical process monitoring and safe operating [J]. Computers and Applied Chemistry, 2007, 24(4): 475-478
    • (2007) Computers and Applied Chemistry , vol.24 , Issue.4 , pp. 475-478
    • Xu, Y.1    Zhao, S.2
  • 7
    • 75149115338 scopus 로고    scopus 로고
    • Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring
    • Yu Jianbo. Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring[J]. Journal of Process Control, 2010, 20: 344-359
    • (2010) Journal of Process Control , vol.20 , pp. 344-359
    • Yu, J.1
  • 8
    • 78049265793 scopus 로고    scopus 로고
    • A general fuzzy-statistical clustering approach for estimating the time of change in variable sampling control charts
    • Mohammad H, Fazel Z, Adel A. A general fuzzy-statistical clustering approach for estimating the time of change in variable sampling control charts[J]. Information Sciences, 2010, 180: 3033-3044
    • (2010) Information Sciences , vol.180 , pp. 3033-3044
    • Mohammad, H.1    Fazel, Z.2    Adel, A.3
  • 9
    • 73749084616 scopus 로고    scopus 로고
    • A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes
    • Mauricio M, Andrés F, Pablo G, Miryan C, Gabriel H. A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes[J]. Computers and Chemical Engineering, 2010, 34: 223-231
    • (2010) Computers and Chemical Engineering , vol.34 , pp. 223-231
    • Mauricio, M.1    Andrés, F.2    Pablo, G.3    Miryan, C.4    Gabriel, H.5
  • 10
    • 0032686509 scopus 로고    scopus 로고
    • Real-time monitoring for a process with multiple operating modes
    • Dae-Hee Hwang, Chonghun Han. Real-time monitoring for a process with multiple operating modes[J]. Control Engineering Practice, 1999, 7: 891-902
    • (1999) Control Engineering Practice , vol.7 , pp. 891-902
    • Hwang, D.-H.1    Han, C.2
  • 11
    • 77954659382 scopus 로고    scopus 로고
    • Adaptive process monitoring using efficient recursive PCA and moving window PCA algorithms
    • Jyh-Cheng Jeng. Adaptive process monitoring using efficient recursive PCA and moving window PCA algorithms [J]. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41(4): 475-481
    • (2010) Journal of the Taiwan Institute of Chemical Engineers , vol.41 , Issue.4 , pp. 475-481
    • Jeng, J.-C.1
  • 15
    • 79959734033 scopus 로고    scopus 로고
    • Some studies on statistical process monitoring based on PCA
    • Wuxi: Jiangnan University
    • Zhao Zhonggai. Some studies on statistical process monitoring based on PCA[D]. Wuxi: Jiangnan University, 2007
    • (2007)
    • Zhao, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.