-
1
-
-
38349091259
-
Maximum margin semi-supervised learning for structured variables
-
Y. Altun, D. McAllester, and M. Belkin. Maximum margin semi-supervised learning for structured variables. In NIPS 18. 2006.
-
(2006)
NIPS
, vol.18
-
-
Altun, Y.1
McAllester, D.2
Belkin, M.3
-
3
-
-
0031620208
-
Combining labeled and unlabeled data with co-training
-
A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In COLT, 1998.
-
(1998)
COLT
-
-
Blum, A.1
Mitchell, T.2
-
4
-
-
0033283778
-
Fast approximate energy minimization via graph cuts
-
Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via graph cuts. In ICCV (1), pages 377-384, 1999.
-
(1999)
ICCV
, Issue.1
, pp. 377-384
-
-
Boykov, Yuri1
Veksler, Olga2
Zabih, Ramin3
-
5
-
-
0001626339
-
A classification EM algorithm for clustering and two stochastic versions
-
G. Celeux and G. Govaert. A classification EM algorithm for clustering and two stochastic versions. Comput. Stat. Data Anal., 14(3):315-332, 1992.
-
(1992)
Comput. Stat. Data Anal
, vol.14
, Issue.3
, pp. 315-332
-
-
Celeux, G.1
Govaert, G.2
-
6
-
-
70049107351
-
Data dependent regularization
-
O. Chapelle, B. Schoelkopf, and A. Zien, editors, MIT Press
-
A. Corduneanu and T. Jaakkola. Data dependent regularization. In O. Chapelle, B. Schoelkopf, and A. Zien, editors, Semi-Supervised Learning. MIT Press, 2006.
-
(2006)
Semi-Supervised Learning
-
-
Corduneanu, A.1
Jaakkola, T.2
-
7
-
-
22944435196
-
Kernel based method for segmentation and modeling of magnetic resonance images
-
Oct
-
C. Garcia and J.A. Moreno. Kernel based method for segmentation and modeling of magnetic resonance images. LNCS, 3315:636-645, Oct 2004.
-
(2004)
LNCS
, vol.3315
, pp. 636-645
-
-
Garcia, C.1
Moreno, J.A.2
-
8
-
-
29344448013
-
Semi-supervised learning by entropy minimization
-
Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. In NIPS 17, 2004.
-
(2004)
NIPS
, vol.17
-
-
Grandvalet, Y.1
Bengio, Y.2
-
9
-
-
84860537772
-
Semi-supervised conditional random fields for improved sequence segmentation and labeling
-
F. Jiao, S. Wang, C. Lee, R. Greiner, and D Schuurmans. Semi-supervised conditional random fields for improved sequence segmentation and labeling. In COLING/ACL, 2006.
-
(2006)
COLING/ACL
-
-
Jiao, F.1
Wang, S.2
Lee, C.3
Greiner, R.4
Schuurmans, D5
-
10
-
-
14344259223
-
Discriminative fields for modeling spatial dependencies in natural images
-
S. Kumar and M. Hebert. Discriminative fields for modeling spatial dependencies in natural images. In NIPS 16, 2003.
-
(2003)
NIPS
, vol.16
-
-
Kumar, S.1
Hebert, M.2
-
11
-
-
84864065649
-
Discriminative random fields: A discriminative framework for contextual interaction in classification
-
S. Kumar and M. Hebert. Discriminative random fields: A discriminative framework for contextual interaction in classification. In CVPR, 2003.
-
(2003)
CVPR
-
-
Kumar, S.1
Hebert, M.2
-
12
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
J. Lafferty, F. Pereira, and A. McCallum. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
-
(2001)
ICML
-
-
Lafferty, J.1
Pereira, F.2
McCallum, A.3
-
14
-
-
0033886806
-
Text classification from labeled and unlabeled documents using EM
-
(/3)
-
K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled and unlabeled documents using EM. Machine Learning, 39(2/3):103-134, 2000.
-
(2000)
Machine Learning
, vol.39
, Issue.2
, pp. 103-134
-
-
Nigam, K.1
McCallum, A.2
Thrun, S.3
Mitchell, T.4
-
15
-
-
33745824894
-
Conditional random fields for object recognition
-
A. Quattoni, M. Collins, and T. Darrell. Conditional random fields for object recognition. In NIPS 17, 2004.
-
(2004)
NIPS
, vol.17
-
-
Quattoni, A.1
Collins, M.2
Darrell, T.3
-
17
-
-
33745888873
-
Contextual models for object detection using boosted random fields
-
A. Torralba, K. Murphy, and W. Freeman. Contextual models for object detection using boosted random fields. In NIPS 17, 2004.
-
(2004)
NIPS
, vol.17
-
-
Torralba, A.1
Murphy, K.2
Freeman, W.3
-
19
-
-
33749243756
-
Accelerated training of conditional random fields with stochastic gradient methods
-
S.V.N. Vishwanathan, N. Schraudolph, M. Schmidt, and K. Murphy. Accelerated training of conditional random fields with stochastic gradient methods. In ICML, 2006.
-
(2006)
ICML
-
-
Vishwanathan, S.V.N.1
Schraudolph, N.2
Schmidt, M.3
Murphy, K.4
-
20
-
-
0000388721
-
Generalized belief propagation
-
J. Yedidia, W. Freeman, and Y. Weiss. Generalized belief propagation. In NIPS 13, pages 689-695, 2000.
-
(2000)
NIPS
, vol.13
, pp. 689-695
-
-
Yedidia, J.1
Freeman, W.2
Weiss, Y.3
-
22
-
-
84899006908
-
Learning with local and global consistency
-
D. Zhou, O. Bousquet, T. Navin Lal, J. Weston, and B. Schölkopf. Learning with local and global consistency. In NIPS 16, 2004.
-
(2004)
NIPS
, vol.16
-
-
Zhou, D.1
Bousquet, O.2
Navin Lal, T.3
Weston, J.4
Schölkopf, B.5
-
23
-
-
31844438615
-
Learning from labeled and unlabeled data on a directed graph
-
D. Zhou, J. Huang, and B. Schölkopf. Learning from labeled and unlabeled data on a directed graph. In ICML, 2005.
-
(2005)
ICML
-
-
Zhou, D.1
Huang, J.2
Schölkopf, B.3
-
24
-
-
1942484430
-
Semi-supervised learning using gaussian fields and harmonic functions
-
X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and harmonic functions. In ICML, 2003.
-
(2003)
ICML
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.3
|