메뉴 건너뛰기




Volumn , Issue , 2006, Pages 793-800

Learning to Model Spatial Dependency: Semi-Supervised Discriminative Random Fields

Author keywords

[No Author keywords available]

Indexed keywords

CONDITIONAL ENTROPY; DATA DEPENDENT; DISCRIMINATIVE RANDOM FIELDS; IMAGES PROCESSING; LABELED DATA; LOG LIKELIHOOD; MAP ESTIMATION; SEMI-SUPERVISED; SPATIAL DEPENDENCIES; TRAINING DATA;

EID: 85157973211     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (7)

References (24)
  • 1
    • 38349091259 scopus 로고    scopus 로고
    • Maximum margin semi-supervised learning for structured variables
    • Y. Altun, D. McAllester, and M. Belkin. Maximum margin semi-supervised learning for structured variables. In NIPS 18. 2006.
    • (2006) NIPS , vol.18
    • Altun, Y.1    McAllester, D.2    Belkin, M.3
  • 3
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In COLT, 1998.
    • (1998) COLT
    • Blum, A.1    Mitchell, T.2
  • 4
    • 0033283778 scopus 로고    scopus 로고
    • Fast approximate energy minimization via graph cuts
    • Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via graph cuts. In ICCV (1), pages 377-384, 1999.
    • (1999) ICCV , Issue.1 , pp. 377-384
    • Boykov, Yuri1    Veksler, Olga2    Zabih, Ramin3
  • 5
    • 0001626339 scopus 로고
    • A classification EM algorithm for clustering and two stochastic versions
    • G. Celeux and G. Govaert. A classification EM algorithm for clustering and two stochastic versions. Comput. Stat. Data Anal., 14(3):315-332, 1992.
    • (1992) Comput. Stat. Data Anal , vol.14 , Issue.3 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 6
    • 70049107351 scopus 로고    scopus 로고
    • Data dependent regularization
    • O. Chapelle, B. Schoelkopf, and A. Zien, editors, MIT Press
    • A. Corduneanu and T. Jaakkola. Data dependent regularization. In O. Chapelle, B. Schoelkopf, and A. Zien, editors, Semi-Supervised Learning. MIT Press, 2006.
    • (2006) Semi-Supervised Learning
    • Corduneanu, A.1    Jaakkola, T.2
  • 7
    • 22944435196 scopus 로고    scopus 로고
    • Kernel based method for segmentation and modeling of magnetic resonance images
    • Oct
    • C. Garcia and J.A. Moreno. Kernel based method for segmentation and modeling of magnetic resonance images. LNCS, 3315:636-645, Oct 2004.
    • (2004) LNCS , vol.3315 , pp. 636-645
    • Garcia, C.1    Moreno, J.A.2
  • 8
    • 29344448013 scopus 로고    scopus 로고
    • Semi-supervised learning by entropy minimization
    • Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. In NIPS 17, 2004.
    • (2004) NIPS , vol.17
    • Grandvalet, Y.1    Bengio, Y.2
  • 9
    • 84860537772 scopus 로고    scopus 로고
    • Semi-supervised conditional random fields for improved sequence segmentation and labeling
    • F. Jiao, S. Wang, C. Lee, R. Greiner, and D Schuurmans. Semi-supervised conditional random fields for improved sequence segmentation and labeling. In COLING/ACL, 2006.
    • (2006) COLING/ACL
    • Jiao, F.1    Wang, S.2    Lee, C.3    Greiner, R.4    Schuurmans, D5
  • 10
    • 14344259223 scopus 로고    scopus 로고
    • Discriminative fields for modeling spatial dependencies in natural images
    • S. Kumar and M. Hebert. Discriminative fields for modeling spatial dependencies in natural images. In NIPS 16, 2003.
    • (2003) NIPS , vol.16
    • Kumar, S.1    Hebert, M.2
  • 11
    • 84864065649 scopus 로고    scopus 로고
    • Discriminative random fields: A discriminative framework for contextual interaction in classification
    • S. Kumar and M. Hebert. Discriminative random fields: A discriminative framework for contextual interaction in classification. In CVPR, 2003.
    • (2003) CVPR
    • Kumar, S.1    Hebert, M.2
  • 12
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, F. Pereira, and A. McCallum. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
    • (2001) ICML
    • Lafferty, J.1    Pereira, F.2    McCallum, A.3
  • 14
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • (/3)
    • K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled and unlabeled documents using EM. Machine Learning, 39(2/3):103-134, 2000.
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 103-134
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 15
    • 33745824894 scopus 로고    scopus 로고
    • Conditional random fields for object recognition
    • A. Quattoni, M. Collins, and T. Darrell. Conditional random fields for object recognition. In NIPS 17, 2004.
    • (2004) NIPS , vol.17
    • Quattoni, A.1    Collins, M.2    Darrell, T.3
  • 17
    • 33745888873 scopus 로고    scopus 로고
    • Contextual models for object detection using boosted random fields
    • A. Torralba, K. Murphy, and W. Freeman. Contextual models for object detection using boosted random fields. In NIPS 17, 2004.
    • (2004) NIPS , vol.17
    • Torralba, A.1    Murphy, K.2    Freeman, W.3
  • 19
    • 33749243756 scopus 로고    scopus 로고
    • Accelerated training of conditional random fields with stochastic gradient methods
    • S.V.N. Vishwanathan, N. Schraudolph, M. Schmidt, and K. Murphy. Accelerated training of conditional random fields with stochastic gradient methods. In ICML, 2006.
    • (2006) ICML
    • Vishwanathan, S.V.N.1    Schraudolph, N.2    Schmidt, M.3    Murphy, K.4
  • 20
    • 0000388721 scopus 로고    scopus 로고
    • Generalized belief propagation
    • J. Yedidia, W. Freeman, and Y. Weiss. Generalized belief propagation. In NIPS 13, pages 689-695, 2000.
    • (2000) NIPS , vol.13 , pp. 689-695
    • Yedidia, J.1    Freeman, W.2    Weiss, Y.3
  • 21
    • 24944435111 scopus 로고    scopus 로고
    • Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine
    • J. Zhang, K. Ma, M.H. Er, and V. Chong. Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine. Intl. Workshop on Advanced Image Technology, 2004.
    • (2004) Intl. Workshop on Advanced Image Technology
    • Zhang, J.1    Ma, K.2    Er, M.H.3    Chong, V.4
  • 23
    • 31844438615 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data on a directed graph
    • D. Zhou, J. Huang, and B. Schölkopf. Learning from labeled and unlabeled data on a directed graph. In ICML, 2005.
    • (2005) ICML
    • Zhou, D.1    Huang, J.2    Schölkopf, B.3
  • 24
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and harmonic functions. In ICML, 2003.
    • (2003) ICML
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.