-
1
-
-
33645505792
-
Convexity, classification, and risk bounds
-
Bartlett, P.L., Jordan, M.I., and McAuliffe, J.D. Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101(473):138-156, 2006.
-
(2006)
Journal of the American Statistical Association
, vol.101
, Issue.473
, pp. 138-156
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
3
-
-
18244390064
-
On robustness properties of convex risk minimization methods for pattern recognition
-
December ISSN 1532-4435
-
Christmann, Andreas and Steinwart, Ingo. On robustness properties of convex risk minimization methods for pattern recognition. J. Mach. Learn. Res., 5:1007-1034, December 2004. ISSN 1532-4435.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1007-1034
-
-
Christmann, A.1
Steinwart, I.2
-
4
-
-
55249114173
-
Agnostically learning halfspaces
-
March ISSN 0097-5397
-
Kalai, Adam Tauman, Klivans, Adam R., Mansour, Yishay, and Servedio, Rocco A. Agnostically learning halfspaces. SIAM J. Comput, 37:1777-1805, March 2008. ISSN 0097-5397.
-
(2008)
SIAM J. Comput
, vol.37
, pp. 1777-1805
-
-
Kalai, A.T.1
Klivans, A.R.2
Mansour, Y.3
Servedio, R.A.4
-
6
-
-
0001553979
-
Toward efficient agnostic learning
-
ACM Press
-
Kearns, Michael, Schapire, Robert E., Sellie, Linda M., and Hellerstein, Lisa. Toward efficient agnostic learning. In Machine Learning, pp. 341-352. ACM Press, 1994.
-
(1994)
Machine Learning
, pp. 341-352
-
-
Kearns, M.1
Schapire, R.E.2
Sellie, L.M.3
Hellerstein, L.4
-
8
-
-
56449118765
-
Classification noise defeats all convex potential boosters
-
Random New York, NY, USA, ACM. ISBN 978-1-60558-205-4
-
Long, Philip M. and Servedio, Rocco A. Random classification noise defeats all convex potential boosters. In Proceedings of the 25th international conference on Machine learning, ICML '08, pp. 608-615, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-205-4.
-
(2008)
Proceedings of the 25th International Conference on Machine Learning, ICML '08
, pp. 608-615
-
-
Long, P.M.1
Servedio, R.A.2
-
9
-
-
77956005954
-
On the Design of Loss Functions for Classification: Theory, robustness to outliers, and SavageBoost
-
Masnadi-Shirazi, Hamed and Vasconcelos, Nuno. On the Design of Loss Functions for Classification: theory, robustness to outliers, and SavageBoost. In Advances in Neural Information Processing Systems 21, pp. 1049-1056. 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.21
, pp. 1049-1056
-
-
Masnadi-Shirazi, H.1
Vasconcelos, N.2
-
10
-
-
78649415021
-
On the efficient minimization of classification calibrated surrogates
-
Nock, Richard and Nielsen, Frank. On the efficient minimization of classification calibrated surrogates. In NIPS'08, pp. 1201-1208, 2008.
-
(2008)
NIPS'08
, pp. 1201-1208
-
-
Nock, R.1
Nielsen, F.2
-
11
-
-
1842733197
-
Are loss functions all the same
-
Rosasco, L., De, E., Caponnetto, Vito A., Piana, M., and Verri, A. Are loss functions all the same. Neural Computation, 16(5), 2004.
-
(2004)
Neural Computation
, vol.16
, Issue.5
-
-
Rosasco, L.1
De, E.2
Caponnetto, V.A.3
Piana, M.4
Verri, A.5
-
14
-
-
85162053390
-
Smoothness, low noise and fast rates
-
Srebro, N., Sridharan, K., and Tewari, A. Smoothness, low noise and fast rates. In NIPS, 2010.
-
(2010)
NIPS
-
-
Srebro, N.1
Sridharan, K.2
Tewari, A.3
|