메뉴 건너뛰기




Volumn 1, Issue , 2012, Pages 623-630

Two-manifold problems with applications to nonlinear system identification

Author keywords

[No Author keywords available]

Indexed keywords

APPROACHES TO LEARNING; CROSS-COVARIANCE; INTERCONNECTED LEARNING; LIMITED DATA; SPECTRAL DECOMPOSITION;

EID: 84867112111     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (29)

References (31)
  • 1
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin, Mikhail and Niyogi, Partha. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15:1373-1396, 2002.
    • (2002) Neural Computation , vol.15 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 2
    • 85162041278 scopus 로고    scopus 로고
    • Predictive state temporal difference learning
    • In Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel, R.S., and Culotta, A. (eds.)
    • Boots, Byron and Gordon, Geoff. Predictive state temporal difference learning. In Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel, R.S., and Culotta, A. (eds.), Advances in Neural Information Processing Systems 23, pp. 271-279. 2010.
    • (2010) Advances in Neural Information Processing Systems 23 , pp. 271-279
    • Boots, B.1    Gordon, G.2
  • 5
    • 0001771345 scopus 로고    scopus 로고
    • Linear least-squares algorithms for temporal difference learning
    • Bradtke, Steven J. and Barto, Andrew G. Linear least-squares algorithms for temporal difference learning. In Machine Learning, pp. 22-33, 1996.
    • (1996) Machine Learning , pp. 22-33
    • Bradtke, S.J.1    Barto, A.G.2
  • 6
    • 57949090815 scopus 로고    scopus 로고
    • Neighborhood smoothing embedding for noisy manifold learning
    • Chen, Guisheng, Yin, Junsong, and Li, Deyi. Neighborhood smoothing embedding for noisy manifold learning. In GrC, pp. 136-141, 2008.
    • (2008) GrC , pp. 136-141
    • Chen, G.1    Yin, J.2    Li, D.3
  • 7
    • 0012657603 scopus 로고    scopus 로고
    • Theory and methods: Special invited paper: Dimension reduction and visualization in discriminant analysis (with discussion)
    • Cook, R. Dennis and Yin, Xiangrong. Theory and methods: Special invited paper: Dimension reduction and visualization in discriminant analysis (with discussion). Australian and New Zealand Journal of Statistics, 43(2): 147-199, 2001.
    • (2001) Australian and New Zealand Journal of Statistics , vol.43 , Issue.2 , pp. 147-199
    • Dennis, C.R.1    Yin, X.2
  • 9
    • 4544371135 scopus 로고    scopus 로고
    • Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces
    • Fukumizu, Kenji, Bach, Francis R., Jordan, Michael I., and Williams, Chris. Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces. Journal of Machine Learning Research, 5:2004, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 2004
    • Fukumizu, K.1    Bach, F.R.2    Jordan, M.I.3    Williams, C.4
  • 13
    • 84898066687 scopus 로고    scopus 로고
    • A spectral algorithm for learning hidden Markov models
    • Hsu, Daniel, Kakade, Sham, and Zhang, Tong. A spectral algorithm for learning hidden Markov models. In COLT, 2009.
    • (2009) COLT
    • Hsu, D.1    Kakade, S.2    Zhang, T.3
  • 15
    • 84867135258 scopus 로고    scopus 로고
    • Spectral dimensionality reduction via maximum entropy
    • Lawrence, Neil D. Spectral dimensionality reduction via maximum entropy. In Proc. AISTATS, 2011.
    • Proc. AISTATS, 2011
    • Lawrence, N.D.1
  • 16
    • 84945116550 scopus 로고
    • Sliced inverse regression for dimension reduction
    • Li, Ker-Chau. Sliced inverse regression for dimension reduction. Journal of the American Statistical Association, 86(414):pp. 316-327, 1991.
    • (1991) Journal of the American Statistical Association , vol.86 , Issue.414 , pp. 316-327
    • Li, K.-C.1
  • 18
    • 34547968745 scopus 로고    scopus 로고
    • Regression on manifolds using kernel dimension reduction
    • Nilsson, Jens, Sha, Fei, and Jordan, Michael I. Regression on manifolds using kernel dimension reduction. In ICML, pp. 697-704, 2007.
    • (2007) ICML , pp. 697-704
    • Nilsson, J.1    Sha, F.2    Jordan, M.I.3
  • 21
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • December
    • Roweis, Sam T. and Saul, Lawrence K. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, December 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 22
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf, Bernhard, Smola, Alex J., and Müller, Klaus-Robert. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299-1319, 1998.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.-R.3
  • 24
    • 38149136576 scopus 로고    scopus 로고
    • A Hilbert space embedding for distributions
    • Takimoto, E. (ed.), Algorithmic Learning Theory, Springer
    • Smola, A.J., Gretton, A., Song, L., and Schölkopf, B. A Hilbert space embedding for distributions. In Takimoto, E. (ed.), Algorithmic Learning Theory, Lecture Notes on Computer Science. Springer, 2007.
    • (2007) Lecture Notes on Computer Science
    • Smola, A.J.1    Gretton, A.2    Song, L.3    Schölkopf, B.4
  • 26
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • doi: 10.1126/science.290.5500.2319.
    • Tenenbaum, Joshua B., Silva, Vin De, and Langford, John. A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319-2323, 2000. doi: 10.1126/science.290.5500.2319.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.3
  • 28
    • 77954229750 scopus 로고    scopus 로고
    • A general framework for manifold alignment
    • Wang, Chang and Mahadevan, Sridhar. A general framework for manifold alignment. In Proc. AAAI, 2009.
    • Proc. AAAI, 2009
    • Wang, C.1    Mahadevan, S.2
  • 30
    • 76649097660 scopus 로고    scopus 로고
    • Robust local tangent space alignment
    • Zhan, Yubin and Yin, Jianping. Robust local tangent space alignment. In ICONIP (1), pp. 293-301, 2009.
    • (2009) ICONIP , Issue.1 , pp. 293-301
    • Zhan, Y.1    Yin, J.2
  • 31
    • 79956007394 scopus 로고    scopus 로고
    • Robust local tangent space alignment via iterative weighted PCA
    • Zhan, Yubin and Yin, Jianping. Robust local tangent space alignment via iterative weighted PCA. Neurocomputing, 74(11):1985-1993, 2011.
    • (2011) Neurocomputing , vol.74 , Issue.11 , pp. 1985-1993
    • Zhan, Y.1    Yin, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.