-
1
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
Belkin, Mikhail and Niyogi, Partha. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15:1373-1396, 2002.
-
(2002)
Neural Computation
, vol.15
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
2
-
-
85162041278
-
Predictive state temporal difference learning
-
In Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel, R.S., and Culotta, A. (eds.)
-
Boots, Byron and Gordon, Geoff. Predictive state temporal difference learning. In Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel, R.S., and Culotta, A. (eds.), Advances in Neural Information Processing Systems 23, pp. 271-279. 2010.
-
(2010)
Advances in Neural Information Processing Systems 23
, pp. 271-279
-
-
Boots, B.1
Gordon, G.2
-
3
-
-
79956360448
-
Closing the learning-planning loop with predictive state representations
-
Boots, Byron, Siddiqi, Sajid M., and Gordon, Geoffrey J. Closing the learning-planning loop with predictive state representations. In Proceedings of Robotics: Science and Systems VI, 2010.
-
Proceedings of Robotics: Science and Systems VI, 2010
-
-
Boots, B.1
Siddiqi, S.M.2
Gordon, G.J.3
-
4
-
-
80055034438
-
An online spectral learning algorithm for partially observable nonlinear dynamical systems
-
Boots, Byron, Siddiqi, Sajid, and Gordon, Geoffrey. An online spectral learning algorithm for partially observable nonlinear dynamical systems. In Proceedings of the 25th National Conference on Artificial Intelligence (AAAI-2011), 2011.
-
Proceedings of the 25th National Conference on Artificial Intelligence (AAAI-2011), 2011
-
-
Boots, B.1
Siddiqi, S.2
Gordon, G.3
-
5
-
-
0001771345
-
Linear least-squares algorithms for temporal difference learning
-
Bradtke, Steven J. and Barto, Andrew G. Linear least-squares algorithms for temporal difference learning. In Machine Learning, pp. 22-33, 1996.
-
(1996)
Machine Learning
, pp. 22-33
-
-
Bradtke, S.J.1
Barto, A.G.2
-
6
-
-
57949090815
-
Neighborhood smoothing embedding for noisy manifold learning
-
Chen, Guisheng, Yin, Junsong, and Li, Deyi. Neighborhood smoothing embedding for noisy manifold learning. In GrC, pp. 136-141, 2008.
-
(2008)
GrC
, pp. 136-141
-
-
Chen, G.1
Yin, J.2
Li, D.3
-
7
-
-
0012657603
-
Theory and methods: Special invited paper: Dimension reduction and visualization in discriminant analysis (with discussion)
-
Cook, R. Dennis and Yin, Xiangrong. Theory and methods: Special invited paper: Dimension reduction and visualization in discriminant analysis (with discussion). Australian and New Zealand Journal of Statistics, 43(2): 147-199, 2001.
-
(2001)
Australian and New Zealand Journal of Statistics
, vol.43
, Issue.2
, pp. 147-199
-
-
Dennis, C.R.1
Yin, X.2
-
8
-
-
29144521495
-
-
Technical Report 942, Institute of Statistical Mathematics, Tokyo, Japan
-
Fukumizu, K., Bach, F., and Gretton, A. Consistency of kernel canonical correlation analysis. Technical Report 942, Institute of Statistical Mathematics, Tokyo, Japan, 2005.
-
(2005)
Consistency of Kernel Canonical Correlation Analysis
-
-
Fukumizu, K.1
Bach, F.2
Gretton, A.3
-
9
-
-
4544371135
-
Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces
-
Fukumizu, Kenji, Bach, Francis R., Jordan, Michael I., and Williams, Chris. Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces. Journal of Machine Learning Research, 5:2004, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 2004
-
-
Fukumizu, K.1
Bach, F.R.2
Jordan, M.I.3
Williams, C.4
-
10
-
-
4344609668
-
-
Ham, Jihun, Lee, Daniel D., Mika, Sebastian, and Schlkopf, Bernhard. A kernel view of the dimensionality reduction of manifolds, 2003.
-
(2003)
A Kernel View of the Dimensionality Reduction of Manifolds
-
-
Ham, J.1
Lee, D.D.2
Mika, S.3
Schlkopf, B.4
-
11
-
-
84862595041
-
Semisupervised alignment of manifolds
-
In Cowell, Robert G. and Ghahramani, Zoubin (eds.)
-
Ham, Jihun, Lee, Daniel, and Saul, Lawrence. Semisupervised alignment of manifolds. In Cowell, Robert G. and Ghahramani, Zoubin (eds.), 10th International Work- shop on Artificial Intelligence and Statistics, pp. 120-127, 2005.
-
(2005)
10th International Work- Shop on Artificial Intelligence and Statistics
, pp. 120-127
-
-
Ham, J.1
Lee, D.2
Saul, L.3
-
13
-
-
84898066687
-
A spectral algorithm for learning hidden Markov models
-
Hsu, Daniel, Kakade, Sham, and Zhang, Tong. A spectral algorithm for learning hidden Markov models. In COLT, 2009.
-
(2009)
COLT
-
-
Hsu, D.1
Kakade, S.2
Zhang, T.3
-
15
-
-
84867135258
-
Spectral dimensionality reduction via maximum entropy
-
Lawrence, Neil D. Spectral dimensionality reduction via maximum entropy. In Proc. AISTATS, 2011.
-
Proc. AISTATS, 2011
-
-
Lawrence, N.D.1
-
16
-
-
84945116550
-
Sliced inverse regression for dimension reduction
-
Li, Ker-Chau. Sliced inverse regression for dimension reduction. Journal of the American Statistical Association, 86(414):pp. 316-327, 1991.
-
(1991)
Journal of the American Statistical Association
, vol.86
, Issue.414
, pp. 316-327
-
-
Li, K.-C.1
-
17
-
-
85162560954
-
Maximum covariance unfolding: Manifold learning for bimodal data
-
Mahadevan, Vijay, Wong, Chi Wah, Pereira, Jose Costa, Liu, Tom, Vasconcelos, Nuno, and Saul, Lawrence. Maximum covariance unfolding: Manifold learning for bimodal data. In Advances in Neural Information Processing Systems 24, 2011.
-
(2011)
Advances in Neural Information Processing Systems 24
-
-
Mahadevan, V.1
Wong, C.W.2
Pereira, J.C.3
Liu, T.4
Vasconcelos, N.5
Saul, L.6
-
18
-
-
34547968745
-
Regression on manifolds using kernel dimension reduction
-
Nilsson, Jens, Sha, Fei, and Jordan, Michael I. Regression on manifolds using kernel dimension reduction. In ICML, pp. 697-704, 2007.
-
(2007)
ICML
, pp. 697-704
-
-
Nilsson, J.1
Sha, F.2
Jordan, M.I.3
-
21
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
December
-
Roweis, Sam T. and Saul, Lawrence K. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, December 2000.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
22
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Schölkopf, Bernhard, Smola, Alex J., and Müller, Klaus-Robert. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299-1319, 1998.
-
(1998)
Neural Computation
, vol.10
, Issue.5
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.J.2
Müller, K.-R.3
-
23
-
-
84860611322
-
Reduced-rank hidden Markov models
-
Siddiqi, Sajid, Boots, Byron, and Gordon, Geoffrey J. Reduced-rank hidden Markov models. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS-2010), 2010.
-
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS-2010), 2010
-
-
Siddiqi, S.1
Boots, B.2
Gordon, G.J.3
-
24
-
-
38149136576
-
A Hilbert space embedding for distributions
-
Takimoto, E. (ed.), Algorithmic Learning Theory, Springer
-
Smola, A.J., Gretton, A., Song, L., and Schölkopf, B. A Hilbert space embedding for distributions. In Takimoto, E. (ed.), Algorithmic Learning Theory, Lecture Notes on Computer Science. Springer, 2007.
-
(2007)
Lecture Notes on Computer Science
-
-
Smola, A.J.1
Gretton, A.2
Song, L.3
Schölkopf, B.4
-
25
-
-
77956540831
-
Hilbert space embeddings of hidden Markov models
-
Song, L., Boots, B., Siddiqi, S. M., Gordon, G. J., and Smola, A. J. Hilbert space embeddings of hidden Markov models. In Proc. 27th Intl. Conf. on Machine Learning (ICML), 2010.
-
Proc. 27th Intl. Conf. on Machine Learning (ICML), 2010
-
-
Song, L.1
Boots, B.2
Siddiqi, S.M.3
Gordon, G.J.4
Smola, A.J.5
-
26
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
doi: 10.1126/science.290.5500.2319.
-
Tenenbaum, Joshua B., Silva, Vin De, and Langford, John. A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319-2323, 2000. doi: 10.1126/science.290.5500.2319.
-
(2000)
Science
, vol.290
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.3
-
28
-
-
77954229750
-
A general framework for manifold alignment
-
Wang, Chang and Mahadevan, Sridhar. A general framework for manifold alignment. In Proc. AAAI, 2009.
-
Proc. AAAI, 2009
-
-
Wang, C.1
Mahadevan, S.2
-
29
-
-
14344251006
-
Learning a kernel matrix for nonlinear dimensionality reduction
-
ACM Press
-
Weinberger, Kilian Q., Sha, Fei, and Saul, Lawrence K. Learning a kernel matrix for nonlinear dimensionality reduction. In In Proceedings of the 21st International Conference on Machine Learning, pp. 839-846. ACM Press, 2004.
-
(2004)
Proceedings of the 21st International Conference on Machine Learning
, pp. 839-846
-
-
Weinberger, K.Q.1
Sha, F.2
Saul, L.K.3
-
30
-
-
76649097660
-
Robust local tangent space alignment
-
Zhan, Yubin and Yin, Jianping. Robust local tangent space alignment. In ICONIP (1), pp. 293-301, 2009.
-
(2009)
ICONIP
, Issue.1
, pp. 293-301
-
-
Zhan, Y.1
Yin, J.2
-
31
-
-
79956007394
-
Robust local tangent space alignment via iterative weighted PCA
-
Zhan, Yubin and Yin, Jianping. Robust local tangent space alignment via iterative weighted PCA. Neurocomputing, 74(11):1985-1993, 2011.
-
(2011)
Neurocomputing
, vol.74
, Issue.11
, pp. 1985-1993
-
-
Zhan, Y.1
Yin, J.2
|