메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Maximum covariance unfolding: Manifold learning for bimodal data

Author keywords

[No Author keywords available]

Indexed keywords

GRAPH THEORY; LEARNING ALGORITHMS; MATHEMATICAL TRANSFORMATIONS; MICROCONTROLLERS;

EID: 85162560954     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (29)

References (25)
  • 1
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373-1396, 2003.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 2
    • 0141607824 scopus 로고    scopus 로고
    • Latent dirichlet allocation
    • D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. JMLR, 3:993-1022, 2003.
    • (2003) JMLR , vol.3 , pp. 993-1022
    • Blei, D.1    Ng, A.2    Jordan, M.3
  • 3
    • 7044239641 scopus 로고    scopus 로고
    • Modeling the hemodynamic response to brain activation
    • R. Buxton, K. Uluda, D. Dubowitz, and T. T Liu. Modeling the hemodynamic response to brain activation. Neuroimage, 23(1):220-233, 2004.
    • (2004) Neuroimage , vol.23 , Issue.1 , pp. 220-233
    • Buxton, R.1    Uluda, K.2    Dubowitz, D.3    Liu, T.T.4
  • 4
    • 31844456089 scopus 로고    scopus 로고
    • Action respecting embedding
    • M. Bowling, A. Ghodsi, and D. Wilkinson. Action respecting embedding. In ICML, pages 65-72, 2005.
    • (2005) ICML , pp. 65-72
    • Bowling, M.1    Ghodsi, A.2    Wilkinson, D.3
  • 5
    • 78149274530 scopus 로고    scopus 로고
    • Subjective localization with action respecting embedding
    • M. Bowling, D. Wilkinson, A. Ghodsi, and A. Milstein. Subjective localization with action respecting embedding. In ISRR, 2005.
    • (2005) ISRR
    • Bowling, M.1    Wilkinson, D.2    Ghodsi, A.3    Milstein, A.4
  • 7
    • 77950594241 scopus 로고    scopus 로고
    • Multi-set canonical correlation analysis for the fusion of concurrent single trial ERP and functional MRI
    • N. Correa, T. Eichele, T. AdalI, Y. Li, and V. Calhoun. Multi-set canonical correlation analysis for the fusion of concurrent single trial ERP and functional MRI. NeuroImage, 2010.
    • (2010) NeuroImage
    • Correa, N.1    Eichele, T.2    Adali, T.3    Li, Y.4    Calhoun, V.5
  • 8
    • 0037422586 scopus 로고    scopus 로고
    • Functional connectivity in the resting brain: A network analysis of the default mode hypothesis
    • M. Greicius, B. Krasnow, A. Reiss, and V. Menon. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. PNAS, 100(1):253, 2003.
    • (2003) PNAS , vol.100 , Issue.1 , pp. 253
    • Greicius, M.1    Krasnow, B.2    Reiss, A.3    Menon, V.4
  • 9
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • D. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16(12):2639-2664, 2004.
    • (2004) Neural Computation , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 10
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004.
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 14
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290:2323-2326, 2000.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 15
    • 80053140950 scopus 로고    scopus 로고
    • Minimum volume embedding
    • San Juan, Puerto Rico
    • B. Shaw and T. Jebara. Minimum volume embedding. In AISTATS, pages 460-467, San Juan, Puerto Rico, 2007.
    • (2007) AISTATS , pp. 460-467
    • Shaw, B.1    Jebara, T.2
  • 16
    • 71149117790 scopus 로고    scopus 로고
    • Structure preserving embedding
    • B. Shaw and T. Jebara. Structure preserving embedding. In ICML, 2009.
    • (2009) ICML
    • Shaw, B.1    Jebara, T.2
  • 17
    • 44449174423 scopus 로고    scopus 로고
    • Low-dimensional embedding of FMRI datasets
    • X. Shen and F. Meyer. Low-dimensional embedding of fMRI datasets. Neuroimage, 41(3):886-902, 2008.
    • (2008) Neuroimage , vol.41 , Issue.3 , pp. 886-902
    • Shen, X.1    Meyer, F.2
  • 19
    • 0033296299 scopus 로고    scopus 로고
    • Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
    • J. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization methods and software, 11(1):625-653, 1999.
    • (1999) Optimization Methods and Software , vol.11 , Issue.1 , pp. 625-653
    • Sturm, J.1
  • 20
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319-2323, 2000.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 21
    • 33744949513 scopus 로고    scopus 로고
    • Unsupervised learning of image manifolds by semidefinite programming
    • K. Weinberger and L. Saul. Unsupervised learning of image manifolds by semidefinite programming. IJCV, 70(1):77-90, 2006.
    • (2006) IJCV , vol.70 , Issue.1 , pp. 77-90
    • Weinberger, K.1    Saul, L.2
  • 22
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • K. Weinberger and L. Saul. Distance metric learning for large margin nearest neighbor classification. JMLR, 10:207-244, 2009.
    • (2009) JMLR , vol.10 , pp. 207-244
    • Weinberger, K.1    Saul, L.2
  • 23
    • 34547972419 scopus 로고    scopus 로고
    • Graph laplacian regularization for large-scale semidefinite programming
    • K. Weinberger, F. Sha, Q. Zhu, and L. Saul. Graph laplacian regularization for large-scale semidefinite programming. NIPS, 19:1489, 2007.
    • (2007) NIPS , vol.19 , pp. 1489
    • Weinberger, K.1    Sha, F.2    Zhu, Q.3    Saul, L.4
  • 24
    • 14344251006 scopus 로고    scopus 로고
    • Learning a kernel matrix for nonlinear dimensionality reduction
    • K. Q.Weinberger, F. Sha, and L. K. Saul. Learning a kernel matrix for nonlinear dimensionality reduction. ICML, 2004.
    • (2004) ICML
    • Weinberger, K.Q.1    Sha, F.2    Saul, L.K.3
  • 25
    • 84863338208 scopus 로고    scopus 로고
    • Fast graph laplacian regularized kernel learning via semidefinite- quadratic-linear programming
    • X. Wu, A. So, Z. Li, and S. Li. Fast graph laplacian regularized kernel learning via semidefinite-quadratic-linear programming. NIPS, 22:1964-1972.
    • NIPS , vol.22 , pp. 1964-1972
    • Wu, X.1    So, A.2    Li, Z.3    Li, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.