메뉴 건너뛰기




Volumn 12, Issue 9, 2012, Pages 12301-12316

Fall detection with the support vector machine during scripted and continuous unscripted activities

Author keywords

Accelerometer; Activities of daily life; Falling detection; Support vector machine; Threshold based classifier

Indexed keywords

ACTIVITIES OF DAILY LIFE; BODY'S CENTER OF GRAVITIES; FALL DETECTION; FALSE POSITIVE; INPUT VECTOR; THRESHOLD METHODS; THRESHOLD-BASED CLASSIFIERS; TRAINING AND TESTING;

EID: 84867028257     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s120912301     Document Type: Article
Times cited : (71)

References (32)
  • 1
    • 24944453509 scopus 로고    scopus 로고
    • The relationship between risk factors for falling and the quality of life in older adults
    • Ozcan, A.; Donat, H.; Gelecek, N.; Ozdirenc, M.; Karadibak, D. The relationship between risk factors for falling and the quality of life in older adults. BMC Public. Health 2005, 5, 90.
    • (2005) BMC Public. Health , vol.5 , pp. 90
    • Ozcan, A.1    Donat, H.2    Gelecek, N.3    Ozdirenc, M.4    Karadibak, D.5
  • 2
    • 0036162166 scopus 로고    scopus 로고
    • A prospective study of the relationship between feared consequences of falling and avoidance of activity in community-living older people
    • Yardley, L.; Smith, H. A prospective study of the relationship between feared consequences of falling and avoidance of activity in community-living older people. Gerontologist 2002, 42, 17-23.
    • (2002) Gerontologist , vol.42 , pp. 17-23
    • Yardley, L.1    Smith, H.2
  • 3
    • 1642273725 scopus 로고    scopus 로고
    • Incidence and consequences of falls among elderly people living in the community
    • Salva, A.; Bolibar, I.; Pera, G.; Arias, C. Incidence and consequences of falls among elderly people living in the community. Med. Clin. 2004, 122, 172-176.
    • (2004) Med. Clin , vol.122 , pp. 172-176
    • Salva, A.1    Bolibar, I.2    Pera, G.3    Arias, C.4
  • 5
    • 0030731486 scopus 로고    scopus 로고
    • Falls injuries due to falls, and the risk of admission to a nursing home
    • Tinetti, M.E.; Williams, C.S. Falls injuries due to falls, and the risk of admission to a nursing home. N. Engl. J. Med. 1997, 337, 1279-1284.
    • (1997) N. Engl. J. Med , vol.337 , pp. 1279-1284
    • Tinetti, M.E.1    Williams, C.S.2
  • 6
    • 2342486930 scopus 로고    scopus 로고
    • The design of a practical and reliable fall detector for community and institutional telecare
    • Doughty, K.; Lewis, R.; McIntosh, A. The design of a practical and reliable fall detector for community and institutional telecare. J. Telemed. Telecare 2000, 6, 150-154.
    • (2000) J. Telemed. Telecare , vol.6 , pp. 150-154
    • Doughty, K.1    Lewis, R.2    McIntosh, A.3
  • 7
    • 77956461979 scopus 로고    scopus 로고
    • Fall detection system for healthcare quality improvement in residential care facilities
    • Huang, C.-N.; Chiang, C.-Y.; Chen, G.-C.; Hsu, S.; Chu, W.-C.; Chan, C.-T. Fall detection system for healthcare quality improvement in residential care facilities. J. Med. Biol. Eng. 2010, 30, 247-252.
    • (2010) J. Med. Biol. Eng , vol.30 , pp. 247-252
    • Huang, C.-N.1    Chiang, C.-Y.2    Chen, G.-C.3    Hsu, S.4    Chu, W.-C.5    Chan, C.-T.6
  • 9
    • 77957241285 scopus 로고    scopus 로고
    • A review of accelerometry-based wearable motion detectors for physical activity monitoring
    • Yang, C.C.; Hsu, Y.L. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 2010, 10, 7772-7788.
    • (2010) Sensors , vol.10 , pp. 7772-7788
    • Yang, C.C.1    Hsu, Y.L.2
  • 10
    • 46149107931 scopus 로고    scopus 로고
    • Comparison of low-complexity fall detection algorithms for body attached accelerometers
    • Kangas, M.; Konttila, A.; Lindgren, P.; Winblad, I.; Jamsa, T. Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait Posture 2008, 28, 285-291.
    • (2008) Gait Posture , vol.28 , pp. 285-291
    • Kangas, M.1    Konttila, A.2    Lindgren, P.3    Winblad, I.4    Jamsa, T.5
  • 11
    • 34249934082 scopus 로고    scopus 로고
    • Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm
    • Bourke, A.K.; O'Brien, J.V.; Lyons, G.M. Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait Posture 2007, 26, 194-199.
    • (2007) Gait Posture , vol.26 , pp. 194-199
    • Bourke, A.K.1    O'Brien, J.V.2    Lyons, G.M.3
  • 12
    • 70450208960 scopus 로고    scopus 로고
    • Using accelerometers for physical actions recognition by a neural fuzzy network
    • Liu, S.-H.; Chang, Y.-J. Using accelerometers for physical actions recognition by a neural fuzzy network. Telemed. J. e-Health 2009, 15, 867-876.
    • (2009) Telemed. J. E-Health , vol.15 , pp. 867-876
    • Liu, S.-H.1    Chang, Y.-J.2
  • 13
    • 70350444407 scopus 로고    scopus 로고
    • A comparison of automatic fall detection by the cross-product and magnitude of tri-axial acceleration
    • Chao, P.-K.; Chan, H.-L.; Tang, F.-T.; Chen, Y.-C.; Wong, M.-K. A comparison of automatic fall detection by the cross-product and magnitude of tri-axial acceleration. Physiol. Meas. 2009, 30, 1027-1037.
    • (2009) Physiol. Meas , vol.30 , pp. 1027-1037
    • Chao, P.-K.1    Chan, H.-L.2    Tang, F.-T.3    Chen, Y.-C.4    Wong, M.-K.5
  • 14
    • 78149280029 scopus 로고    scopus 로고
    • Evaluation of waist-mounted tri-axial accelerometer based fall-detection algorithms during scripted and continuous unscripted activities
    • Bourke, A.K.; Van de Ven, P.; Gamble, M.; O'Connor, R.; Murphy, K.; Bogan, E.; McQuade, E.; Finucane, P.; O'Laighin, G.; Nelson, J. Evaluation of waist-mounted tri-axial accelerometer based fall-detection algorithms during scripted and continuous unscripted activities. J. Biomech. 2010, 43, 3051-3057.
    • (2010) J. Biomech , vol.43 , pp. 3051-3057
    • Bourke, A.K.1    Van de Ven, P.2    Gamble, M.3    O'Connor, R.4    Murphy, K.5    Bogan, E.6    McQuade, E.7    Finucane, P.8    O'Laighin, G.9    Nelson, J.10
  • 15
    • 63249132839 scopus 로고    scopus 로고
    • Sensitivity and specificity of fall detection in people aged 40 years and over
    • Kangas, M.; Vikman, I.; Wiklander, J.; Lindgren, P.; Nyberg L.; Jamsa, T. Sensitivity and specificity of fall detection in people aged 40 years and over. Gait Posture 2009, 29, 571-574.
    • (2009) Gait Posture , vol.29 , pp. 571-574
    • Kangas, M.1    Vikman, I.2    Wiklander, J.3    Lindgren, P.4    Nyberg, L.5    Jamsa, T.6
  • 16
    • 38149045656 scopus 로고    scopus 로고
    • A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor
    • Bourke, A.K.; Lyons, G.M. A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Med. Eng. Phys. 2008, 30, 84-90.
    • (2008) Med. Eng. Phys , vol.30 , pp. 84-90
    • Bourke, A.K.1    Lyons, G.M.2
  • 17
    • 27744589862 scopus 로고    scopus 로고
    • Prevention of falls network Europe and outcomes consensus group. Development of a common outcome data set for fall injury prevention trials: The prevention of falls network Europe consensus
    • Lamb, S.; Jørstad-Stein, E.C.; Hauer, K.; Becker, C. Prevention of falls network Europe and outcomes consensus group. Development of a common outcome data set for fall injury prevention trials: The prevention of falls network Europe consensus. J. Am. Geriatr. Soc. 2005, 53, 1618-1622.
    • (2005) J. Am. Geriatr. Soc , vol.53 , pp. 1618-1622
    • Lamb, S.1    Jørstad-Stein, E.C.2    Hauer, K.3    Becker, C.4
  • 20
    • 37749027001 scopus 로고    scopus 로고
    • Support vector machine training for improved hidden markov modeling
    • Sloin, A.; Burshtein, D. Support vector machine training for improved hidden markov modeling. IEEE Trans. Signal Process. 2008, 56, 172-188.
    • (2008) IEEE Trans. Signal Process , vol.56 , pp. 172-188
    • Sloin, A.1    Burshtein, D.2
  • 22
    • 63449142028 scopus 로고    scopus 로고
    • Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings
    • Khandoker, A.H.; Palaniswami, M.; Karmakar, C.K. Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 37-48.
    • (2009) IEEE Trans. Inf. Technol. Biomed , vol.13 , pp. 37-48
    • Khandoker, A.H.1    Palaniswami, M.2    Karmakar, C.K.3
  • 23
    • 0034602774 scopus 로고    scopus 로고
    • Knowledge based analysis of micro-array gene expression data using support vector machine
    • Brown, M.; Grundy, W.; Lin, D.; Cristianini, N.; Sugnet, C.; Furey, T. Knowledge based analysis of micro-array gene expression data using support vector machine. Proc. Natl. Acad. Sci. USA 2000, 97, 262-267.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 262-267
    • Brown, M.1    Grundy, W.2    Lin, D.3    Cristianini, N.4    Sugnet, C.5    Furey, T.6
  • 25
    • 37049034509 scopus 로고    scopus 로고
    • Cancer diagnosis and protein secondary structure prediction using support vector machine
    • Chu, F.; Jin, G.; Wang, L. Cancer diagnosis and protein secondary structure prediction using support vector machine. Stud. Fuzz. Soft Comput. 2005, 177, 343-363.
    • (2005) Stud. Fuzz. Soft Comput , vol.177 , pp. 343-363
    • Chu, F.1    Jin, G.2    Wang, L.3
  • 26
    • 34047114775 scopus 로고    scopus 로고
    • Multiclass support vector machines for EEG-signals classification
    • Guler, I.; Ubeyli, E.D. Multiclass support vector machines for EEG-signals classification. IEEE Trans. Inf. Technol. Biomed. 2007, 11, 117-126.
    • (2007) IEEE Trans. Inf. Technol. Biomed , vol.11 , pp. 117-126
    • Guler, I.1    Ubeyli, E.D.2
  • 27
    • 1642265037 scopus 로고    scopus 로고
    • Support vector machines based expert system for reliable heartbeat recognition
    • Osowski, S.; Hoai, L.T.; Markiewicz, T. Support vector machines based expert system for reliable heartbeat recognition. IEEE Trans. Biomed. Eng. 2004, 51, 582-589.
    • (2004) IEEE Trans. Biomed. Eng , vol.51 , pp. 582-589
    • Osowski, S.1    Hoai, L.T.2    Markiewicz, T.3
  • 28
    • 27744453578 scopus 로고    scopus 로고
    • Classification of ECG beats by using a fast least square support vector machines with a dynamic programming feature selection algorithm
    • Acir, N. Classification of ECG beats by using a fast least square support vector machines with a dynamic programming feature selection algorithm. Neural Comput. Appl. 2005, 14, 299-309.
    • (2005) Neural Comput. Appl , vol.14 , pp. 299-309
    • Acir, N.1
  • 29
    • 33644765907 scopus 로고    scopus 로고
    • A support vector machine classifier algorithm based on a perturbation method and its application to ECG beat recognition systems
    • Acir, N. A support vector machine classifier algorithm based on a perturbation method and its application to ECG beat recognition systems. Expert Syst. Appl. 2006, 31, 150-158.
    • (2006) Expert Syst. Appl , vol.31 , pp. 150-158
    • Acir, N.1
  • 30
    • 53849139802 scopus 로고    scopus 로고
    • Identification of QRS complexes in 12-lead electrocardiogram
    • Mehta, S.S.; Lingayat, N.S. Identification of QRS complexes in 12-lead electrocardiogram. Expert Syst. Appl. 2009, 36, 820-828.
    • (2009) Expert Syst. Appl , vol.36 , pp. 820-828
    • Mehta, S.S.1    Lingayat, N.S.2
  • 31
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2, 955-971.
    • (1998) Data Min. Knowl. Discov , vol.2 , pp. 955-971
    • Burges, C.J.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.