메뉴 건너뛰기




Volumn 4, Issue , 2010, Pages

Synaptic theory of Replicator-like melioration

Author keywords

Operant conditioning; Reinforcement learning; Synaptic plasticity

Indexed keywords

CELLULAR PHYSIOLOGY; LEARNING BEHAVIOR; LEARNING RATES; NEURAL ACTIVITY; OPERANT CONDITIONING; SYNAPTIC PLASTICITY; SYNAPTIC PLASTICITY RULES;

EID: 84866930679     PISSN: 16625188     EISSN: None     Source Type: Journal    
DOI: 10.3389/fncom.2010.00017     Document Type: Article
Times cited : (12)

References (43)
  • 1
    • 34548049545 scopus 로고    scopus 로고
    • Reinforcement learning, spike-time-dependent plasticity, and the BCM rule
    • Baras, D., and Meir, R. (2007). Reinforcement learning, spike-time-dependent plasticity, and the BCM rule. Neural. Comput. 19, 2245-2279.
    • (2007) Neural. Comput , vol.19 , pp. 2245-2279
    • Baras, D.1    Meir, R.2
  • 2
    • 1842612383 scopus 로고    scopus 로고
    • Prefrontal cortex and decision making in a mixed-strategy game
    • Barraclough, D. J., Conroy, M. L., and Lee, D. (2004). Prefrontal cortex and decision making in a mixed-strategy game. Nat. Neurosci. 7, 404-410.
    • (2004) Nat. Neurosci , vol.7 , pp. 404-410
    • Barraclough, D.J.1    Conroy, M.L.2    Lee, D.3
  • 3
    • 33750347385 scopus 로고    scopus 로고
    • The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks
    • Bogacz, R., Brown, E., Moehlis, J., Holmes, P., and Cohen, J. D. (2006). The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 113, 700-765.
    • (2006) Psychol. Rev , vol.113 , pp. 700-765
    • Bogacz, R.1    Brown, E.2    Moehlis, J.3    Holmes, P.4    Cohen, J.D.5
  • 4
    • 0031281590 scopus 로고    scopus 로고
    • Learning through reinforcement and replicator dynamics
    • Borgers, T., and Sarin, R. (1997). Learning through reinforcement and replicator dynamics. J. Econ. Theory 77, 1-14.
    • (1997) J. Econ. Theory , vol.77 , pp. 1-14
    • Borgers, T.1    Sarin, R.2
  • 5
    • 0000742255 scopus 로고
    • A stochastic learning model of economic behavior
    • Cross, J. G. (1973). A stochastic learning model of economic behavior. Q. J Econ. 87, 239-266.
    • (1973) Q. J Econ , vol.87 , pp. 239-266
    • Cross, J.G.1
  • 8
    • 0038829878 scopus 로고    scopus 로고
    • Predicting how people play games: Reinforcement learning in experimental games with unique, mixed strategy equilibria
    • Erev, I., and Roth, A. E. (1998). Predicting how people play games: reinforcement learning in experimental games with unique, mixed strategy equilibria. Am. Econ. Rev. 88, 848-881.
    • (1998) Am. Econ. Rev , vol.88 , pp. 848-881
    • Erev, I.1    Roth, A.E.2
  • 9
    • 37549060355 scopus 로고    scopus 로고
    • Reinforcement learning with modulated spike timing dependent synaptic plasticity
    • Farries, M. A., and Fairhall, A. L. (2007). Reinforcement learning with modulated spike timing dependent synaptic plasticity. J. Neurophysiol. 98, 3648-3665.
    • (2007) J. Neurophysiol , vol.98 , pp. 3648-3665
    • Farries, M.A.1    Fairhall, A.L.2
  • 10
    • 33746652644 scopus 로고    scopus 로고
    • Gradient learning in spiking neural networks by dynamic perturbation of conductances
    • Fiete, I. R., and Seung, H. S. (2006). Gradient learning in spiking neural networks by dynamic perturbation of conductances. Phys. Rev. Lett. 97, 048104.
    • (2006) Phys. Rev. Lett , vol.97 , pp. 048104
    • Fiete, I.R.1    Seung, H.S.2
  • 11
    • 34249708388 scopus 로고    scopus 로고
    • Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity
    • Florian, R. V. (2007). Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural. Comput. 19, 1468-1502.
    • (2007) Neural. Comput , vol.19 , pp. 1468-1502
    • Florian, R.V.1
  • 13
    • 0035490184 scopus 로고    scopus 로고
    • The rat approximates an ideal detector of changes in rates of reward: Implications for the law of effect
    • Gallistel, C. R., Mark, T. A., King, A. P., and Latham, P. E. (2001). The rat approximates an ideal detector of changes in rates of reward: implications for the law of effect. J. Exp. Psychol. Anim. Behav. Process. 27, 354-372.
    • (2001) J. Exp. Psychol. Anim. Behav. Process , vol.27 , pp. 354-372
    • Gallistel, C.R.1    Mark, T.A.2    King, A.P.3    Latham, P.E.4
  • 14
    • 5144228089 scopus 로고    scopus 로고
    • Indeterminacy in brain and behavior
    • Glimcher, P. W. (2005). Indeterminacy in brain and behavior. Annu. Rev. Psychol. 56, 25-56.
    • (2005) Annu. Rev. Psychol , vol.56 , pp. 25-56
    • Glimcher, P.W.1
  • 15
    • 46149084687 scopus 로고    scopus 로고
    • Whisker movements evoked by stimulation of single motor neurons in the facial nucleus of the rat
    • Herfst, L. J., and Brecht, M. (2008). Whisker movements evoked by stimulation of single motor neurons in the facial nucleus of the rat. J. Neurophysiol. 99, 2821-2832.
    • (2008) J. Neurophysiol , vol.99 , pp. 2821-2832
    • Herfst, L.J.1    Brecht, M.2
  • 16
    • 27844539379 scopus 로고
    • Relative and absolute strength of response as a function of frequency of reinforcement
    • Herrnstein, R. J. (1961). Relative and absolute strength of response as a function of frequency of reinforcement. J. Exp. Anal. Behav. 4, 267-272.
    • (1961) J. Exp. Anal. Behav , vol.4 , pp. 267-272
    • Herrnstein, R.J.1
  • 18
    • 0000471746 scopus 로고
    • Melioration, a theory of distributed choice
    • Herrnstein, R. J., and Prelec, D. (1991). Melioration, a theory of distributed choice. J. Econ. Perspect. 5, 137-156.
    • (1991) J. Econ. Perspect , vol.5 , pp. 137-156
    • Herrnstein, R.J.1    Prelec, D.2
  • 19
    • 77956898593 scopus 로고
    • On-line learning processes in artificial neural networks
    • ed. J. G. Taylor (Amsterdam: Elsevier
    • Heskes, T., and Kappen, B. (1993). "On-line learning processes in artificial neural networks," in Mathematical Approaches to Neural Networks, Vol.51 ed. J. G. Taylor (Amsterdam: Elsevier), 199-233.
    • (1993) Mathematical Approaches to Neural Networks , vol.51 , pp. 199-233
    • Heskes, T.1    Kappen, B.2
  • 21
    • 34948906745 scopus 로고    scopus 로고
    • Solving the distal reward problem through linkage of STDP and dopamine signaling
    • Izhikevich, E. M. (2007). Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb. Cortex 17, 2443-2452.
    • (2007) Cereb. Cortex , vol.17 , pp. 2443-2452
    • Izhikevich, E.M.1
  • 22
  • 23
    • 67349117811 scopus 로고    scopus 로고
    • Reinforcement learning can account for associative and perceptual learning on a visual-decision task
    • Law, C. T., and Gold, J. I. (2009). Reinforcement learning can account for associative and perceptual learning on a visual-decision task. Nat. Neurosci. 12, 655-663.
    • (2009) Nat. Neurosci , vol.12 , pp. 655-663
    • Law, C.T.1    Gold, J.I.2
  • 24
    • 84858713861 scopus 로고    scopus 로고
    • Functional network organization in motor cortex can be explained by reward-modulated Hebbian learning
    • eds Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta
    • Legenstein, R., Chase, S. M., Schwartz, A. B., and Maass, W. (2009). "Functional network organization in motor cortex can be explained by reward-modulated Hebbian learning," in Advances in Neural Information Processing Systems, Vol. 22, eds Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, 1105-1113.
    • (2009) Advances In Neural Information Processing Systems , vol.22 , pp. 1105-1113
    • Legenstein, R.1    Chase, S.M.2    Schwartz, A.B.3    Maass, W.4
  • 25
    • 55449121121 scopus 로고    scopus 로고
    • A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback
    • doi: 10.1371/journal.pcbi.1000180
    • Legenstein, R., Pecevski, D., and Maass, W. (2008). A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. PLoS Comput. Biol. 4, e1000180. doi: 10.1371/journal.pcbi.1000180.
    • (2008) PLoS Comput. Biol , vol.4
    • Legenstein, R.1    Pecevski, D.2    Maass, W.3
  • 26
    • 41849100338 scopus 로고    scopus 로고
    • Robustness of learning that is based on covariance-driven synaptic plasticity
    • doi: 10.1371/journal.pcbi.1000007
    • Loewenstein, Y. (2008a). Robustness of learning that is based on covariance-driven synaptic plasticity. PLoS Comput. Biol. 4, e1000007. doi: 10.1371/journal.pcbi.1000007.
    • (2008) PLoS Comput. Biol , vol.4
    • Loewenstein, Y.1
  • 27
    • 84870472610 scopus 로고    scopus 로고
    • Covariance-based synaptic plasticity: A model for operant conditioning
    • Washington, DC: Society for Neuroscience Abs. SFN meeting
    • Loewenstein, Y. (2008b). Covariance-based synaptic plasticity: a model for operant conditioning. Neuroscience Meeting Planner, Washington, DC: Society for Neuroscience Abs. SFN meeting.
    • (2008) Neuroscience Meeting Planner
    • Loewenstein, Y.1
  • 28
    • 70449718877 scopus 로고    scopus 로고
    • Operant matching as a Nash equilibrium of an intertemporal game
    • Loewenstein, Y., Prelec, D., and Seung, H. S. (2009). Operant matching as a Nash equilibrium of an intertemporal game. Neural. Comput. 21, 2755-2773.
    • (2009) Neural. Comput , vol.21 , pp. 2755-2773
    • Loewenstein, Y.1    Prelec, D.2    Seung, H.S.3
  • 29
    • 33750041626 scopus 로고    scopus 로고
    • Operant matching is a generic outcome of synaptic plasticity based on the covariance between reward and neural activity
    • Loewenstein, Y., and Seung, H. S. (2006). Operant matching is a generic outcome of synaptic plasticity based on the covariance between reward and neural activity. Proc. Natl. Acad. Sci. U.S.A. 103, 15224-15229.
    • (2006) Proc. Natl. Acad. Sci. U.S.A , vol.103 , pp. 15224-15229
    • Loewenstein, Y.1    Seung, H.S.2
  • 30
    • 0025735983 scopus 로고
    • A more biologically plausible learning rule for neural networks
    • Mazzoni, P., Andersen, R. A., and Jordan, M. I. (1991). A more biologically plausible learning rule for neural networks. Proc. Natl. Acad. Sci. U.S.A. 88, 4433-4437.
    • (1991) Proc. Natl. Acad. Sci. U.S.A , vol.88 , pp. 4433-4437
    • Mazzoni, P.1    Andersen, R.A.2    Jordan, M.I.3
  • 32
    • 84870407599 scopus 로고    scopus 로고
    • A dynamic model for matching behavior that is based on the covariance of reward and action
    • Neiman, T., and Loewenstein, Y. (2007). A dynamic model for matching behavior that is based on the covariance of reward and action. Neural Plast. 2007, 79.
    • (2007) Neural Plast , vol.2007 , pp. 79
    • Neiman, T.1    Loewenstein, Y.2
  • 33
    • 84870435708 scopus 로고    scopus 로고
    • Adaptation to matching behavior: Theory and experiments
    • Washington, DC: Society for Neuroscience Abs. SFN meeting
    • Neiman, T., and Loewenstein, Y. (2008). Adaptation to matching behavior: theory and experiments. Neuroscience Meeting Planner, Washington, DC: Society for Neuroscience Abs. SFN meeting.
    • (2008) Neuroscience Meeting Planner
    • Neiman, T.1    Loewenstein, Y.2
  • 34
    • 61449244649 scopus 로고    scopus 로고
    • The temporal winner-take-all readout
    • doi: 10.1371/journal.pcbi.1000286
    • Shamir, M. (2009). The temporal winner-take-all readout. PLoS Comput. Biol. 5, e1000286. doi: 10.1371/journal.pcbi.1000286.
    • (2009) PLoS Comput. Biol , vol.5
    • Shamir, M.1
  • 35
    • 0013315245 scopus 로고    scopus 로고
    • A re-examination of probability matching and rational choice
    • Shanks, D. R., Tunney, R. J., and McCarthy, J. D. (2002). A re-examination of probability matching and rational choice. J. Behav. Decis. Mak. 15, 233-250.
    • (2002) J. Behav. Decis. Mak , vol.15 , pp. 233-250
    • Shanks, D.R.1    Tunney, R.J.2    McCarthy, J.D.3
  • 36
    • 33645566919 scopus 로고    scopus 로고
    • A biophysically based neural model of matching law behavior: Melioration by stochastic synapses
    • Soltani, A., and Wang, X. J. (2006). A biophysically based neural model of matching law behavior: melioration by stochastic synapses. J. Neurosci. 26, 3731-3744.
    • (2006) J. Neurosci , vol.26 , pp. 3731-3744
    • Soltani, A.1    Wang, X.J.2
  • 37
    • 2942726234 scopus 로고    scopus 로고
    • Matching behavior and the representation of value in the parietal cortex
    • Sugrue, L. P., Corrado, G. S., and Newsome, W. T. (2004). Matching behavior and the representation of value in the parietal cortex. Science 304, 1782-1787.
    • (2004) Science , vol.304 , pp. 1782-1787
    • Sugrue, L.P.1    Corrado, G.S.2    Newsome, W.T.3
  • 40
    • 0034014181 scopus 로고    scopus 로고
    • An economist's perspective on probability matching
    • Vulkan, N. (2000). An economist's perspective on probability matching. J. Econ. Surv. 14, 101-118.
    • (2000) J. Econ. Surv , vol.14 , pp. 101-118
    • Vulkan, N.1
  • 41
    • 0037028039 scopus 로고    scopus 로고
    • Probabilistic decision making by slow reverberation in cortical circuits
    • Wang, X. J. (2002). Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, 955-968.
    • (2002) Neuron , vol.36 , pp. 955-968
    • Wang, X.J.1
  • 42
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8, 229-256.
    • (1992) Mach. Learn , vol.8 , pp. 229-256
    • Williams, R.J.1
  • 43
    • 37649027755 scopus 로고    scopus 로고
    • Learning in neural networks by reinforcement of irregular spiking
    • Xie, X., and Seung, H. S. (2004). Learning in neural networks by reinforcement of irregular spiking. Phys. Rev. E Stat. Nonlin. Soft Matter. Phys. 69, 041909.
    • (2004) Phys. Rev. E Stat. Nonlin. Soft Matter. Phys , vol.69 , pp. 041909
    • Xie, X.1    Seung, H.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.