메뉴 건너뛰기




Volumn , Issue , 2012, Pages 390-401

SAHAD: Subgraph analysis in massive networks using Hadoop

Author keywords

frequent subgraph; graphlet frequency distribution; Hadoop; MapReduce; motif; subgraph isomorphism

Indexed keywords

FREQUENCY DISTRIBUTIONS; FREQUENT SUBGRAPHS; HADOOP; MAP-REDUCE; MOTIF; SUBGRAPH ISOMORPHISM;

EID: 84866851845     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IPDPS.2012.44     Document Type: Conference Paper
Times cited : (73)

References (32)
  • 5
    • 33646034344 scopus 로고    scopus 로고
    • Relational graph analysis with real-world constraints: An application in irs tax fraud detection
    • E. Bloedorn, N. J. Rothleder, D. DeBarr, and L. Rosen. Relational graph analysis with real-world constraints: An application in irs tax fraud detection. In AAAI, 2005.
    • (2005) AAAI
    • Bloedorn, E.1    Rothleder, N.J.2    DeBarr, D.3    Rosen, L.4
  • 6
    • 2442483205 scopus 로고    scopus 로고
    • Mining molecular fragments: Finding relevant substructures of molecules
    • C. Borgelt and M. R. Berhold. Mining molecular fragments: Finding relevant substructures of molecules. In ICDM, 2002.
    • (2002) ICDM
    • Borgelt, C.1    Berhold, M.R.2
  • 8
    • 37549003336 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. Communications of the ACM, 51(1):107-113, 2008.
    • (2008) Communications of the ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 10
    • 5144222231 scopus 로고    scopus 로고
    • On the complexity of fixed parameter clique and dominating set
    • F. Eisenbrand and F. Grandoni. On the complexity of fixed parameter clique and dominating set. Theoretical Computer Science, 326, 2004.
    • (2004) Theoretical Computer Science , vol.326
    • Eisenbrand, F.1    Grandoni, F.2
  • 12
    • 34547469442 scopus 로고    scopus 로고
    • Network motif discovery using subgraph enumeration and symmetry-breaking
    • Springer
    • J. Grochow and M. Kellis. Network motif discovery using subgraph enumeration and symmetry-breaking. In Research in Computational Molecular Biology, pages 92-106. Springer, 2007.
    • (2007) Research in Computational Molecular Biology , pp. 92-106
    • Grochow, J.1    Kellis, M.2
  • 13
    • 84866851763 scopus 로고    scopus 로고
    • Spin: Mining maximal frequent subgraphs from graph databases
    • J. Huan, W. Wang, J. Prins, and J. Yang. Spin: Mining maximal frequent subgraphs from graph databases. In ACM KDD, 2004.
    • (2004) ACM KDD
    • Huan, J.1    Wang, W.2    Prins, J.3    Yang, J.4
  • 14
    • 50849094593 scopus 로고    scopus 로고
    • Algorithm engineering for color-coding with applications to signaling pathway detection
    • F. Hüffner, S. Wernicke, and T. Zichner. Algorithm engineering for color-coding with applications to signaling pathway detection. Algorithmica, 52(2):114-132, 2008.
    • (2008) Algorithmica , vol.52 , Issue.2 , pp. 114-132
    • Hüffner, F.1    Wernicke, S.2    Zichner, T.3
  • 15
    • 0012906024 scopus 로고    scopus 로고
    • An apriori-based algorithm for mining frequent substructures from graph data
    • A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent substructures from graph data. In ECML-PKDD, 2000.
    • (2000) ECML-PKDD
    • Inokuchi, A.1    Washio, T.2    Motoda, H.3
  • 16
    • 84866848862 scopus 로고    scopus 로고
    • Counting and detecting small subgraphs via equations and matrix multiplication
    • M. Kowaluk, A. Lingas, and E. Lundell. Counting and detecting small subgraphs via equations and matrix multiplication. In ACM SODA, 2011.
    • (2011) ACM SODA
    • Kowaluk, M.1    Lingas, A.2    Lundell, E.3
  • 17
    • 27944453480 scopus 로고    scopus 로고
    • Finding frequent patterns in a large sparse graph
    • M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse graph. Data mining and knowledge discovery, 11(3):243-271, 2005.
    • (2005) Data Mining and Knowledge Discovery , vol.11 , Issue.3 , pp. 243-271
    • Kuramochi, M.1    Karypis, G.2
  • 19
    • 71049144427 scopus 로고    scopus 로고
    • Mapreduce-based pattern finding algorithm applied in motif detection for prescription compatibility network
    • Y. Liu, X. Jiang, H. Chen, J. Ma, and X. Zhang. Mapreduce-based pattern finding algorithm applied in motif detection for prescription compatibility network. Advanced Parallel Processing Technologies, pages 341-355, 2009.
    • (2009) Advanced Parallel Processing Technologies , pp. 341-355
    • Liu, Y.1    Jiang, X.2    Chen, H.3    Ma, J.4    Zhang, X.5
  • 22
    • 33846672214 scopus 로고    scopus 로고
    • Biological network comparison using graphlet degree distribution
    • N. Pržulj. Biological network comparison using graphlet degree distribution. Bioinformatics, 23(2):e177, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.2
    • Pržulj, N.1
  • 28
    • 84866874541 scopus 로고    scopus 로고
    • Finding, minimizing, and counting weighted subgraphs
    • V. Vassilevska and R. Williams. Finding, minimizing, and counting weighted subgraphs. In ACM STOC, 2009.
    • (2009) ACM STOC
    • Vassilevska, V.1    Williams, R.2
  • 30
    • 32344434822 scopus 로고    scopus 로고
    • Mining closed relational graphs with connectivity constraints
    • X. Yan, X. J. Zhou, and J. Han. Mining closed relational graphs with connectivity constraints. In KDD, 2005.
    • (2005) KDD
    • Yan, X.1    Zhou, X.J.2    Han, J.3
  • 31
    • 34547455408 scopus 로고    scopus 로고
    • Out-of-core coherent closed quasi-clique mining from large dense graph databases
    • June
    • Z. Zeng, J. Wang, L. Zhou, and G. Karypis. Out-of-core coherent closed quasi-clique mining from large dense graph databases. ACM Trans. Database Syst., 32, June 2007.
    • (2007) ACM Trans. Database Syst. , vol.32
    • Zeng, Z.1    Wang, J.2    Zhou, L.3    Karypis, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.