-
1
-
-
46449089721
-
A myocardial lineage derives from Tbx18 epicardial cells
-
Cai C.L., Martin J.C., Sun Y., Cui L., Wang L., Ouyang K., Yang L., Bu L., Liang X., Zhang X., Stallcup W.B., Denton C.P., McCulloch A., Chen J., Evans S.M. A myocardial lineage derives from Tbx18 epicardial cells. Nature 2008, 454:104-108.
-
(2008)
Nature
, vol.454
, pp. 104-108
-
-
Cai, C.L.1
Martin, J.C.2
Sun, Y.3
Cui, L.4
Wang, L.5
Ouyang, K.6
Yang, L.7
Bu, L.8
Liang, X.9
Zhang, X.10
Stallcup, W.B.11
Denton, C.P.12
McCulloch, A.13
Chen, J.14
Evans, S.M.15
-
3
-
-
65249137151
-
Tbx18 and the fate of epicardial progenitors
-
Christoffels V.M., Grieskamp T., Norden J., Mommersteeg M.T., Rudat C., Kispert A. Tbx18 and the fate of epicardial progenitors. Nature 2009, 456:E8-E9.
-
(2009)
Nature
, vol.456
-
-
Christoffels, V.M.1
Grieskamp, T.2
Norden, J.3
Mommersteeg, M.T.4
Rudat, C.5
Kispert, A.6
-
4
-
-
68549119152
-
Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart
-
de Pater E., Clijsters L., Marques S.R., Lin Y.F., Garavito-Aguilar Z.V., Yelon D., Bakkers J. Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart. Development 2009, 136:1633-1641.
-
(2009)
Development
, vol.136
, pp. 1633-1641
-
-
de Pater, E.1
Clijsters, L.2
Marques, S.R.3
Lin, Y.F.4
Garavito-Aguilar, Z.V.5
Yelon, D.6
Bakkers, J.7
-
5
-
-
78649980258
-
Myocardial lineage development
-
Evans S.M., Yelon D., Conlon F.L., Kirby M.L. Myocardial lineage development. Circ. Res. 2010, 107:1428-1444.
-
(2010)
Circ. Res.
, vol.107
, pp. 1428-1444
-
-
Evans, S.M.1
Yelon, D.2
Conlon, F.L.3
Kirby, M.L.4
-
6
-
-
0030806299
-
Fashioning the vertebrate heart: earliest embryonic decisions
-
Fishman M.C., Chien K.R. Fashioning the vertebrate heart: earliest embryonic decisions. Development 1997, 124:2099-2117.
-
(1997)
Development
, vol.124
, pp. 2099-2117
-
-
Fishman, M.C.1
Chien, K.R.2
-
7
-
-
0030664296
-
Parsing the heart: genetic modules for organ assembly
-
Fishman M.C., Olson E.N. Parsing the heart: genetic modules for organ assembly. Cell 1997, 91:153-156.
-
(1997)
Cell
, vol.91
, pp. 153-156
-
-
Fishman, M.C.1
Olson, E.N.2
-
8
-
-
84860237424
-
Clonally dominant cardiomyocytes direct heart morphogenesis
-
Gupta V., Poss K.D. Clonally dominant cardiomyocytes direct heart morphogenesis. Nature 2012, 484:479-484.
-
(2012)
Nature
, vol.484
, pp. 479-484
-
-
Gupta, V.1
Poss, K.D.2
-
9
-
-
79956296352
-
Zebrafish cardiac development requires a conserved secondary heart field
-
Hami D., Grimes A.C., Tsai H.J., Kirby M.L. Zebrafish cardiac development requires a conserved secondary heart field. Development 2011, 138:2389-2398.
-
(2011)
Development
, vol.138
, pp. 2389-2398
-
-
Hami, D.1
Grimes, A.C.2
Tsai, H.J.3
Kirby, M.L.4
-
10
-
-
34547699399
-
Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury
-
Hsieh P.C., Segers V.F., Davis M.E., MacGillivray C., Gannon J., Molkentin J.D., Robbins J., Lee R.T. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat. Med. 2007, 13:970-974.
-
(2007)
Nat. Med.
, vol.13
, pp. 970-974
-
-
Hsieh, P.C.1
Segers, V.F.2
Davis, M.E.3
MacGillivray, C.4
Gannon, J.5
Molkentin, J.D.6
Robbins, J.7
Lee, R.T.8
-
11
-
-
84866864083
-
Epidemiological studies for cardiovascular diseases in China from 1980 to 2010
-
(in Chinese with an English abstract)
-
Hu D.S., Gu D.F. Epidemiological studies for cardiovascular diseases in China from 1980 to 2010. Zhonghua Liu Xing Bing Xue Za Zhi 2011, 32:1059-1064. (in Chinese with an English abstract).
-
(2011)
Zhonghua Liu Xing Bing Xue Za Zhi
, vol.32
, pp. 1059-1064
-
-
Hu, D.S.1
Gu, D.F.2
-
12
-
-
33847348346
-
Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations
-
Hutson M.R., Kirby M.L. Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations. Semin. Cell Dev. Biol. 2007, 18:101-110.
-
(2007)
Semin. Cell Dev. Biol.
, vol.18
, pp. 101-110
-
-
Hutson, M.R.1
Kirby, M.L.2
-
13
-
-
77950200829
-
Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation
-
Jopling C., Sleep E., Raya M., Martí M., Raya A., Belmonte J.C. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 2010, 464:606-609.
-
(2010)
Nature
, vol.464
, pp. 606-609
-
-
Jopling, C.1
Sleep, E.2
Raya, M.3
Martí, M.4
Raya, A.5
Belmonte, J.C.6
-
14
-
-
84858383447
-
Genetics of human cardiovascular disease
-
Kathiresan S., Srivastava D. Genetics of human cardiovascular disease. Cell 2012, 148:1242-1257.
-
(2012)
Cell
, vol.148
, pp. 1242-1257
-
-
Kathiresan, S.1
Srivastava, D.2
-
15
-
-
84863229669
-
Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells
-
Katz T.C., Singh M.K., Degenhardt K., Rivera-Feliciano J., Johnson R.L., Epstein J.A., Tabin C.J. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev. Cell 2012, 22:639-650.
-
(2012)
Dev. Cell
, vol.22
, pp. 639-650
-
-
Katz, T.C.1
Singh, M.K.2
Degenhardt, K.3
Rivera-Feliciano, J.4
Johnson, R.L.5
Epstein, J.A.6
Tabin, C.J.7
-
16
-
-
12244265506
-
Retinoic acid signaling restricts the cardiac progenitor pool
-
Keegan B.R., Feldman J.L., Begemann G., Ingham P.W., Yelon D. Retinoic acid signaling restricts the cardiac progenitor pool. Science 2005, 307:247-249.
-
(2005)
Science
, vol.307
, pp. 247-249
-
-
Keegan, B.R.1
Feldman, J.L.2
Begemann, G.3
Ingham, P.W.4
Yelon, D.5
-
17
-
-
4043121702
-
Organization of cardiac chamber progenitors in the zebrafish blastula
-
Keegan B.R., Meyer D., Yelon D. Organization of cardiac chamber progenitors in the zebrafish blastula. Development 2004, 131:3081-3091.
-
(2004)
Development
, vol.131
, pp. 3081-3091
-
-
Keegan, B.R.1
Meyer, D.2
Yelon, D.3
-
18
-
-
0035461911
-
The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm
-
Kelly R.G., Brown N.A., Buckingham M.E. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev. Cell 2001, 1:435-440.
-
(2001)
Dev. Cell
, vol.1
, pp. 435-440
-
-
Kelly, R.G.1
Brown, N.A.2
Buckingham, M.E.3
-
19
-
-
79959427955
-
+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration
-
+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 2011, 138:2895-2902.
-
(2011)
Development
, vol.138
, pp. 2895-2902
-
-
Kikuchi, K.1
Gupta, V.2
Wang, J.3
Holdway, J.E.4
Wills, A.A.5
Fang, Y.6
Poss, K.D.7
-
20
-
-
79952527330
-
Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration
-
Kikuchi K., Holdway J.E., Major R.J., Blum N., Dahn R.D., Begemann G., Poss K.D. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev. Cell. 2011, 20:397-404.
-
(2011)
Dev. Cell.
, vol.20
, pp. 397-404
-
-
Kikuchi, K.1
Holdway, J.E.2
Major, R.J.3
Blum, N.4
Dahn, R.D.5
Begemann, G.6
Poss, K.D.7
-
21
-
-
77950201708
-
Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes
-
Kikuchi K., Holdway J.E., Werdich A.A., Anderson R.M., Fang Y., Egnaczyk G.F., Evans T., Macrae C.A., Stainier D.Y., Poss K.D. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 2010, 464:601-605.
-
(2010)
Nature
, vol.464
, pp. 601-605
-
-
Kikuchi, K.1
Holdway, J.E.2
Werdich, A.A.3
Anderson, R.M.4
Fang, Y.5
Egnaczyk, G.F.6
Evans, T.7
Macrae, C.A.8
Stainier, D.Y.9
Poss, K.D.10
-
22
-
-
78049235110
-
PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts
-
Kim J., Wu Q., Zhang Y., Wiens K.M., Huang Y., Rubin N., Shimada H., Handin R.I., Chao M.Y., Tuan T.L., Starnes V.A., Lien C.L. PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts. Proc. Natl. Acad. Sci. USA 2010, 107:17206-17210.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 17206-17210
-
-
Kim, J.1
Wu, Q.2
Zhang, Y.3
Wiens, K.M.4
Huang, Y.5
Rubin, N.6
Shimada, H.7
Handin, R.I.8
Chao, M.Y.9
Tuan, T.L.10
Starnes, V.A.11
Lien, C.L.12
-
23
-
-
77956545424
-
Origin of cardiac progenitor cells in the developing and postnatal heart
-
Kuhn E.N., Wu S.M. Origin of cardiac progenitor cells in the developing and postnatal heart. J. Cell. Physiol. 2010, 225:321-325.
-
(2010)
J. Cell. Physiol.
, vol.225
, pp. 321-325
-
-
Kuhn, E.N.1
Wu, S.M.2
-
24
-
-
79955517275
-
Mef2cb regulates late myocardial cell addition from a second heart field-like population of progenitors in zebrafish
-
Lazic S., Scott I.C. Mef2cb regulates late myocardial cell addition from a second heart field-like population of progenitors in zebrafish. Dev. Biol. 2011, 354:123-133.
-
(2011)
Dev. Biol.
, vol.354
, pp. 123-133
-
-
Lazic, S.1
Scott, I.C.2
-
25
-
-
0027943780
-
Cardiovascular development in the zebrafish. II. Endocardial progenitors are sequestered within the heart field
-
Lee R.R.K., Stainier D.Y.R., Weinstein B.M., Fishman M.C. Cardiovascular development in the zebrafish. II. Endocardial progenitors are sequestered within the heart field. Development 1994, 120:3361-3366.
-
(1994)
Development
, vol.120
, pp. 3361-3366
-
-
Lee, R.R.K.1
Stainier, D.Y.R.2
Weinstein, B.M.3
Fishman, M.C.4
-
26
-
-
33750483609
-
A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration
-
Lepilina A., Coon A.N., Kikuchi K., Holdway J.E., Roberts R.W., Burns C.G., Poss K.D. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 2006, 127:607-619.
-
(2006)
Cell
, vol.127
, pp. 607-619
-
-
Lepilina, A.1
Coon, A.N.2
Kikuchi, K.3
Holdway, J.E.4
Roberts, R.W.5
Burns, C.G.6
Poss, K.D.7
-
27
-
-
0030219688
-
Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development
-
Li F., Wang X., Capasso J.M., Gerdes A.M. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J. Mol. Cell. Cardiol. 1996, 28:1737-1746.
-
(1996)
J. Mol. Cell. Cardiol.
, vol.28
, pp. 1737-1746
-
-
Li, F.1
Wang, X.2
Capasso, J.M.3
Gerdes, A.M.4
-
28
-
-
0037373479
-
Cardiac neural crest in zebrafish embryos contributes to myocardial cell lineage and early heart function
-
Li Y.X., Zdanowicz M., Young L., Kumiski D., Leatherbury L., Kirby M.L. Cardiac neural crest in zebrafish embryos contributes to myocardial cell lineage and early heart function. Dev. Dyn. 2003, 226:540-550.
-
(2003)
Dev. Dyn.
, vol.226
, pp. 540-550
-
-
Li, Y.X.1
Zdanowicz, M.2
Young, L.3
Kumiski, D.4
Leatherbury, L.5
Kirby, M.L.6
-
29
-
-
77954216121
-
Tbx5 and Bmp signaling are essential for proepicardium specification in zebrafish
-
Liu J., Stainier D.Y. Tbx5 and Bmp signaling are essential for proepicardium specification in zebrafish. Circ. Res. 2010, 106:1818-1828.
-
(2010)
Circ. Res.
, vol.106
, pp. 1818-1828
-
-
Liu, J.1
Stainier, D.Y.2
-
30
-
-
0035477641
-
The outflow tract of the heart is recruited from a novel heart-forming field
-
Mjaatvedt C.H., Nakaoka T., Moreno-Rodriguez R., Norris R.A., Kern M.J., Eisenberg C.A., Turner D., Markwald R.R. The outflow tract of the heart is recruited from a novel heart-forming field. Dev. Biol. 2001, 238:97-109.
-
(2001)
Dev. Biol.
, vol.238
, pp. 97-109
-
-
Mjaatvedt, C.H.1
Nakaoka, T.2
Moreno-Rodriguez, R.3
Norris, R.A.4
Kern, M.J.5
Eisenberg, C.A.6
Turner, D.7
Markwald, R.R.8
-
31
-
-
33749361499
-
Gene regulatory networks in the evolution and development of the heart
-
Olson E.N. Gene regulatory networks in the evolution and development of the heart. Science 2006, 313:1922-1927.
-
(2006)
Science
, vol.313
, pp. 1922-1927
-
-
Olson, E.N.1
-
32
-
-
80053991893
-
Vascular endothelial and endocardial progenitors differentiate as cardiomyocytes in the absence of Etsrp/Etv2 function
-
Palencia-Desai S., Kohli V., Kang J., Chi N.C., Black B.L., Sumanas S. Vascular endothelial and endocardial progenitors differentiate as cardiomyocytes in the absence of Etsrp/Etv2 function. Development 2011, 138:4721-4732.
-
(2011)
Development
, vol.138
, pp. 4721-4732
-
-
Palencia-Desai, S.1
Kohli, V.2
Kang, J.3
Chi, N.C.4
Black, B.L.5
Sumanas, S.6
-
33
-
-
84856115740
-
Signaling during epicardium and coronary vessel development
-
Pérez-Pomares J.M., de la Pompa J.L. Signaling during epicardium and coronary vessel development. Circ. Res. 2011, 109:1429-1442.
-
(2011)
Circ. Res.
, vol.109
, pp. 1429-1442
-
-
Pérez-Pomares, J.M.1
de la Pompa, J.L.2
-
34
-
-
79952065525
-
Transient regenerative potential of the neonatal mouse heart
-
Porrello E.R., Mahmoud A.I., Simpson E., Hill J.A., Richardson J.A., Olson E.N., Sadek H.A. Transient regenerative potential of the neonatal mouse heart. Science 2011, 331:1078-1080.
-
(2011)
Science
, vol.331
, pp. 1078-1080
-
-
Porrello, E.R.1
Mahmoud, A.I.2
Simpson, E.3
Hill, J.A.4
Richardson, J.A.5
Olson, E.N.6
Sadek, H.A.7
-
35
-
-
77956873456
-
Advances in understanding tissue regenerative capacity and mechanisms in animals
-
Poss K.D. Advances in understanding tissue regenerative capacity and mechanisms in animals. Annu. Rev. Genet. 2010, 11:710-722.
-
(2010)
Annu. Rev. Genet.
, vol.11
, pp. 710-722
-
-
Poss, K.D.1
-
37
-
-
0033951035
-
Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar)
-
Reifers F., Walsh E.C., Léger S., Stainier D.Y., Brand M. Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar). Development 2000, 127:225-235.
-
(2000)
Development
, vol.127
, pp. 225-235
-
-
Reifers, F.1
Walsh, E.C.2
Léger, S.3
Stainier, D.Y.4
Brand, M.5
-
38
-
-
0035876418
-
Bmp2b and Oep promote early myocardial differentiation through their regulation of gata5
-
Reiter J.F., Verkade H., Stainier D.Y. Bmp2b and Oep promote early myocardial differentiation through their regulation of gata5. Dev. Biol. 2001, 234:330-338.
-
(2001)
Dev. Biol.
, vol.234
, pp. 330-338
-
-
Reiter, J.F.1
Verkade, H.2
Stainier, D.Y.3
-
39
-
-
0037404074
-
Cardiac neural crest contributes to cardiomyogenesis in zebrafish
-
Sato M., Yost H.J. Cardiac neural crest contributes to cardiomyogenesis in zebrafish. Dev. Biol. 2003, 257:127-139.
-
(2003)
Dev. Biol.
, vol.257
, pp. 127-139
-
-
Sato, M.1
Yost, H.J.2
-
40
-
-
34547482623
-
Vessel and blood specification override cardiac potential in anterior mesoderm
-
Schoenebeck J.J., Keegan B.R., Yelon D. Vessel and blood specification override cardiac potential in anterior mesoderm. Dev. Cell 2007, 13:254-267.
-
(2007)
Dev. Cell
, vol.13
, pp. 254-267
-
-
Schoenebeck, J.J.1
Keegan, B.R.2
Yelon, D.3
-
42
-
-
39249083750
-
Development of the proepicardial organ in the zebrafish
-
Serluca F.C. Development of the proepicardial organ in the zebrafish. Dev. Biol. 2008, 315:18-27.
-
(2008)
Dev. Biol.
, vol.315
, pp. 18-27
-
-
Serluca, F.C.1
-
43
-
-
81155159733
-
Restraint of Fgf8 signaling by retinoic acid signaling is required for proper heart and forelimb formation
-
Sorrell M.R., Waxman J.S. Restraint of Fgf8 signaling by retinoic acid signaling is required for proper heart and forelimb formation. Dev. Biol. 2011, 358:44-55.
-
(2011)
Dev. Biol.
, vol.358
, pp. 44-55
-
-
Sorrell, M.R.1
Waxman, J.S.2
-
44
-
-
0035221107
-
Zebrafish genetics and vertebrate heart formation
-
Stainier D.Y. Zebrafish genetics and vertebrate heart formation. Nat. Rev. Genet. 2001, 2:39-48.
-
(2001)
Nat. Rev. Genet.
, vol.2
, pp. 39-48
-
-
Stainier, D.Y.1
-
45
-
-
0027296431
-
Cardiovascular development in the zebrafish: I. Myocardial fate map and heart tube formation
-
Stainier D.Y.R., Lee R.K., Fishman M.C. Cardiovascular development in the zebrafish: I. Myocardial fate map and heart tube formation. Development 1993, 119:31-40.
-
(1993)
Development
, vol.119
, pp. 31-40
-
-
Stainier, D.Y.R.1
Lee, R.K.2
Fishman, M.C.3
-
46
-
-
0028810741
-
Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages
-
Stainier D.Y.R., Weinstein B.M., Detrich H.W.I., Zon L.I., Fishman M.C. cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 1995, 121:3141-3150.
-
(1995)
Development
, vol.121
, pp. 3141-3150
-
-
Stainier, D.Y.R.1
Weinstein, B.M.2
Detrich, H.W.I.3
Zon, L.I.4
Fishman, M.C.5
-
47
-
-
33847177201
-
Distinct Wnt signaling pathways have opposing roles in appendage regeneration
-
Stoick-Cooper C.L., Weidinger G., Riehle K.J., Hubbert C., Major M.B., Fausto N., Moon R.T. Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 2007, 134:479-489.
-
(2007)
Development
, vol.134
, pp. 479-489
-
-
Stoick-Cooper, C.L.1
Weidinger, G.2
Riehle, K.J.3
Hubbert, C.4
Major, M.B.5
Fausto, N.6
Moon, R.T.7
-
48
-
-
59149088483
-
Hedgehog signaling plays a cell-autonomous role in maximizing cardiac developmental potential
-
Thomas N.A., Koudijs M., van Eeden F.J., Joyner A.L., Yelon D. Hedgehog signaling plays a cell-autonomous role in maximizing cardiac developmental potential. Development 2008, 135:3789-3799.
-
(2008)
Development
, vol.135
, pp. 3789-3799
-
-
Thomas, N.A.1
Koudijs, M.2
van Eeden, F.J.3
Joyner, A.L.4
Yelon, D.5
-
49
-
-
77955334500
-
How to make a heart: the origin and regulation of cardiac progenitor cells
-
Vincent S.D., Buckingham M.E. How to make a heart: the origin and regulation of cardiac progenitor cells. Curr. Top. Dev. Biol. 2010, 90:1-41.
-
(2010)
Curr. Top. Dev. Biol.
, vol.90
, pp. 1-41
-
-
Vincent, S.D.1
Buckingham, M.E.2
-
50
-
-
0034839927
-
Conotruncal myocardium arises from a secondary heart field
-
Waldo K.L., Kumiski D.H., Wallis K.T., Stadt H.A., Hutson M.R., Platt D.H., Kirby M.L. Conotruncal myocardium arises from a secondary heart field. Development 2001, 128:3179-3188.
-
(2001)
Development
, vol.128
, pp. 3179-3188
-
-
Waldo, K.L.1
Kumiski, D.H.2
Wallis, K.T.3
Stadt, H.A.4
Hutson, M.R.5
Platt, D.H.6
Kirby, M.L.7
-
51
-
-
57149100815
-
Hoxb5b acts downstream of retinoic acid signaling in the forelimb field to restrict heart field potential in zebrafish
-
Waxman J.S., Keegan B.R., Roberts R.W., Poss K.D., Yelon D. Hoxb5b acts downstream of retinoic acid signaling in the forelimb field to restrict heart field potential in zebrafish. Dev. Cell 2008, 15:923-934.
-
(2008)
Dev. Cell
, vol.15
, pp. 923-934
-
-
Waxman, J.S.1
Keegan, B.R.2
Roberts, R.W.3
Poss, K.D.4
Yelon, D.5
-
52
-
-
43449110115
-
Molecular and developmental biology of the hemangioblast
-
Xiong J.-W. Molecular and developmental biology of the hemangioblast. Dev. Dyn. 2008, 237:1218-1231.
-
(2008)
Dev. Dyn.
, vol.237
, pp. 1218-1231
-
-
Xiong, J.-W.1
-
53
-
-
43449117491
-
An acyltransferase controls the generation of hematopoietic and endothelial lineages in zebrafish
-
Xiong J.-W., Yu Q., Zhang J., Mably J.D. An acyltransferase controls the generation of hematopoietic and endothelial lineages in zebrafish. Circ. Res. 2008, 102:1057-1064.
-
(2008)
Circ. Res.
, vol.102
, pp. 1057-1064
-
-
Xiong, J.-W.1
Yu, Q.2
Zhang, J.3
Mably, J.D.4
-
54
-
-
74949096558
-
Pregenerative medicine: developmental paradigms in the biology of cardiovascular regeneration
-
Yi B.A., Wernet O., Chien K.R. Pregenerative medicine: developmental paradigms in the biology of cardiovascular regeneration. J. Clin. Invest. 2010, 120:20-28.
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 20-28
-
-
Yi, B.A.1
Wernet, O.2
Chien, K.R.3
-
55
-
-
84859989029
-
Regulation of zebrafish heart regeneration by miR-133
-
Yin V.P., Lepilina A., Smith A., Poss K.D. Regulation of zebrafish heart regeneration by miR-133. Dev. Biol. 2012, 365:319-327.
-
(2012)
Dev. Biol.
, vol.365
, pp. 319-327
-
-
Yin, V.P.1
Lepilina, A.2
Smith, A.3
Poss, K.D.4
-
56
-
-
46449138664
-
Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart
-
Zhou B., Ma Q., Rajagopal S., Wu S.M., Domian I., Rivera-Feliciano J., Jiang D., von Gise A., Ikeda S., Chien K.R., Pu W.T. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 2008, 454:109-113.
-
(2008)
Nature
, vol.454
, pp. 109-113
-
-
Zhou, B.1
Ma, Q.2
Rajagopal, S.3
Wu, S.M.4
Domian, I.5
Rivera-Feliciano, J.6
Jiang, D.7
von Gise, A.8
Ikeda, S.9
Chien, K.R.10
Pu, W.T.11
-
57
-
-
79959850611
-
Latent TGF-β binding protein 3 identifies a second heart field in zebrafish
-
Zhou Y., Cashman T.J., Nevis K.R., Obregon P., Carney S.A., Liu Y., Gu A., Mosimann C., Sondalle S., Peterson R.E., Heideman W., Burns C.E., Burns C.G. Latent TGF-β binding protein 3 identifies a second heart field in zebrafish. Nature 2011, 474:645-648.
-
(2011)
Nature
, vol.474
, pp. 645-648
-
-
Zhou, Y.1
Cashman, T.J.2
Nevis, K.R.3
Obregon, P.4
Carney, S.A.5
Liu, Y.6
Gu, A.7
Mosimann, C.8
Sondalle, S.9
Peterson, R.E.10
Heideman, W.11
Burns, C.E.12
Burns, C.G.13
|