-
1
-
-
79953248728
-
High-order finite element methods for time-fractional partial differential equations
-
Y. Jiang, and J. Ma High-order finite element methods for time-fractional partial differential equations J. Comput. Appl. Math. 235 2011 3285 3290
-
(2011)
J. Comput. Appl. Math.
, vol.235
, pp. 3285-3290
-
-
Jiang, Y.1
Ma, J.2
-
3
-
-
43949160695
-
Fractional model equation for anomalous diffusion
-
R. Metzler, W.G. Glöckle, and T.F. Nonnenmacher Fractional model equation for anomalous diffusion Physica A 211 1994 13 24
-
(1994)
Physica A
, vol.211
, pp. 13-24
-
-
Metzler, R.1
Glöckle, W.G.2
Nonnenmacher, T.F.3
-
4
-
-
34748865972
-
Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations
-
S. Momani, and Z. Odibat Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations Comput. Math. Appl. 54 2007 910 919
-
(2007)
Comput. Math. Appl.
, vol.54
, pp. 910-919
-
-
Momani, S.1
Odibat, Z.2
-
5
-
-
77952597982
-
Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by He's homotopy perturbation method
-
S. Momani, and A. Yildirim Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by He's homotopy perturbation method Int. J. Comput. Math. 87 2010 1057 1065
-
(2010)
Int. J. Comput. Math.
, vol.87
, pp. 1057-1065
-
-
Momani, S.1
Yildirim, A.2
-
6
-
-
70350564868
-
The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics
-
Z. Odibat, and S. Momani The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics Comput. Math. Appl. 58 2009 2199 2208
-
(2009)
Comput. Math. Appl.
, vol.58
, pp. 2199-2208
-
-
Odibat, Z.1
Momani, S.2
-
7
-
-
79955464792
-
A note on boundary value problems for a coupled system of fractional differential equations
-
M. Rehman, and R. Khan A note on boundary value problems for a coupled system of fractional differential equations Comput. Math. Appl. 61 2011 2630 2637
-
(2011)
Comput. Math. Appl.
, vol.61
, pp. 2630-2637
-
-
Rehman, M.1
Khan, R.2
-
8
-
-
84878661122
-
Analysis of a local discontinuous Galerkin method for time-fractional advection-diffusion equations
-
(in press)
-
L.L. Wei, X.D. Zhang, Y.N. He, Analysis of a local discontinuous Galerkin method for time-fractional advection-diffusion equations. Internat. J. Numer. Methods Heat Fluid Flow (in press).
-
Internat. J. Numer. Methods Heat Fluid Flow
-
-
Wei, L.L.1
Zhang, X.D.2
He, Y.N.3
-
9
-
-
77951248176
-
Analytical approach to fractional partial differential equations in fluid mechanics by means of the homotopy perturbation method
-
A. Yildirim Analytical approach to fractional partial differential equations in fluid mechanics by means of the homotopy perturbation method Internat. J. Numer. Methods Heat Fluid Flow 20 2010 186 200
-
(2010)
Internat. J. Numer. Methods Heat Fluid Flow
, vol.20
, pp. 186-200
-
-
Yildirim, A.1
-
10
-
-
78249267580
-
He's homotopy perturbation method for solving the space- and time-fractional telegraph equations
-
A. Yildirim He's homotopy perturbation method for solving the space- and time-fractional telegraph equations Int. J. Comput. Math. 87 2010 2998 3006
-
(2010)
Int. J. Comput. Math.
, vol.87
, pp. 2998-3006
-
-
Yildirim, A.1
-
11
-
-
79961005744
-
A generalized fractional KN equation hierarchy and its fractional Hamiltonian structure
-
F. Yu A generalized fractional KN equation hierarchy and its fractional Hamiltonian structure Comput. Math. Appl. 62 2011 1522 1530
-
(2011)
Comput. Math. Appl.
, vol.62
, pp. 1522-1530
-
-
Yu, F.1
-
12
-
-
0034920816
-
Numerical simulation of coupled nonlinear Schrödinger equation
-
M.S. Ismail, and T.R. Taha Numerical simulation of coupled nonlinear Schrödinger equation Math. Comput. Simul. 56 2001 547 562
-
(2001)
Math. Comput. Simul.
, vol.56
, pp. 547-562
-
-
Ismail, M.S.1
Taha, T.R.2
-
13
-
-
0142216144
-
Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system
-
J.Q. Sun, and M.Z. Qin Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system Comput. Phys. Comm. 155 2003 221 235
-
(2003)
Comput. Phys. Comm.
, vol.155
, pp. 221-235
-
-
Sun, J.Q.1
Qin, M.Z.2
-
14
-
-
16844366209
-
Local discontinuous Galerkin methods for nonlinear Schrödinger equations
-
Y. Xu, and C.-W. Shu Local discontinuous Galerkin methods for nonlinear Schrödinger equations J. Comput. Phys. 205 2005 72 97
-
(2005)
J. Comput. Phys.
, vol.205
, pp. 72-97
-
-
Xu, Y.1
Shu, C.-W.2
-
16
-
-
35348877949
-
Local discontinuous Galerkin methods for the Cahn-Hilliard type equations
-
Y. Xia, Y. Xu, and C.-W. Shu Local discontinuous Galerkin methods for the Cahn-Hilliard type equations J. Comput. Phys. 227 2007 472 491
-
(2007)
J. Comput. Phys.
, vol.227
, pp. 472-491
-
-
Xia, Y.1
Xu, Y.2
Shu, C.-W.3
-
17
-
-
22544467513
-
Local discontinuous Galerkin methods for two classes of two-dimensional nonlinear wave equations
-
Y. Xu, and C.-W. Shu Local discontinuous Galerkin methods for two classes of two-dimensional nonlinear wave equations Phys. D. 208 2005 21 58
-
(2005)
Phys. D.
, vol.208
, pp. 21-58
-
-
Xu, Y.1
Shu, C.-W.2
-
18
-
-
33645906589
-
Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations
-
Y. Xu, and C.-W. Shu Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations Comput. Method Appl. Mech. Engrg. 195 2006 3430 3447
-
(2006)
Comput. Method Appl. Mech. Engrg.
, vol.195
, pp. 3430-3447
-
-
Xu, Y.1
Shu, C.-W.2
-
20
-
-
0035734429
-
Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids
-
B. Cockburn, G. Kanschat, I. Perugia, and D. Schotzau Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids SIAM J. Numer. Anal. 39 2001 264 285
-
(2001)
SIAM J. Numer. Anal.
, vol.39
, pp. 264-285
-
-
Cockburn, B.1
Kanschat, G.2
Perugia, I.3
Schotzau, D.4
-
21
-
-
34547548712
-
Finite difference/spectral approximations for the time-fractional diffusion equation
-
Y. Lin, and C. Xu Finite difference/spectral approximations for the time-fractional diffusion equation J. Comput. Phys. 225 2007 1533 1552
-
(2007)
J. Comput. Phys.
, vol.225
, pp. 1533-1552
-
-
Lin, Y.1
Xu, C.2
-
22
-
-
0001690553
-
The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems
-
B. Cockburn, and C.-W. Shu The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems J. Comput. Phys. 141 1998 199 224
-
(1998)
J. Comput. Phys.
, vol.141
, pp. 199-224
-
-
Cockburn, B.1
Shu, C.-W.2
-
23
-
-
0344393366
-
The local discontinuous Galerkin method for time-dependent convection-diffusion systems
-
B. Cockburn, and C.-W. Shu The local discontinuous Galerkin method for time-dependent convection-diffusion systems SIAM J. Numer. Anal. 35 1998 2440 2463
-
(1998)
SIAM J. Numer. Anal.
, vol.35
, pp. 2440-2463
-
-
Cockburn, B.1
Shu, C.-W.2
|