-
3
-
-
0036887936
-
Fractional kinetics and anomalous transport
-
G.M. Zaslavsky Fractional kinetics and anomalous transport Phys. Rep. 371 2002 461 580
-
(2002)
Phys. Rep.
, vol.371
, pp. 461-580
-
-
Zaslavsky, G.M.1
-
5
-
-
19944384253
-
Dynamics with low-level fractionality
-
V.E. Tarasov, and G.M. Zaslavsky Dynamics with low-level fractionality Physica A 354 2005 249 261
-
(2005)
Physica A
, vol.354
, pp. 249-261
-
-
Tarasov, V.E.1
Zaslavsky, G.M.2
-
6
-
-
1842535435
-
Fractional FokkerPlanck equation for fractal media
-
V.E. Tarasov Fractional FokkerPlanck equation for fractal media Chaos 14 2004 123 127
-
(2004)
Chaos
, vol.14
, pp. 123-127
-
-
Tarasov, V.E.1
-
7
-
-
41349084525
-
Fractional systems and fractional Bogoliubov hierarchy equations
-
V.E. Tarasov Fractional systems and fractional Bogoliubov hierarchy equations Phys. Rev. E 71 2005 011102
-
(2005)
Phys. Rev. e
, vol.71
, pp. 011102
-
-
Tarasov, V.E.1
-
8
-
-
20444376273
-
Fractional Liouville and BBGKI equations
-
V.E. Tarasov Fractional Liouville and BBGKI equations J. Phys.: Conf. Ser. 7 2005 17 33
-
(2005)
J. Phys.: Conf. Ser.
, vol.7
, pp. 17-33
-
-
Tarasov, V.E.1
-
9
-
-
0022492943
-
Realization of the generalized transfer in a medium with fractal geometry
-
R. Nigmatullin The realization of the generalized transfer in a medium with fractal geometry Phys. Status Solidi b 133 1986 425 430 (Pubitemid 16505297)
-
(1986)
Physica Status Solidi (B) Basic Research
, vol.133
, Issue.1
, pp. 425-430
-
-
Nigmatullin, R.R.1
-
11
-
-
4043151477
-
The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics
-
R. Metzler, and J. Klafter The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics J. Phys. A 37 2004 161 208
-
(2004)
J. Phys. A
, vol.37
, pp. 161-208
-
-
Metzler, R.1
Klafter, J.2
-
27
-
-
0022660581
-
On the fractional calculus model of viscoelastic behavior
-
DOI 10.1122/1.549887
-
R.L. Bagley, and P.J. Torvik On the fractional calculus model of viscoelastic behavior J. Rheol. 30 1 1986 133 155 (Pubitemid 16535851)
-
(1986)
Journal of Rheology
, vol.30
, Issue.1
, pp. 133-155
-
-
Bagley, R.L.1
Torvik, P.J.2
-
28
-
-
0030575463
-
Analysis of four-parameter fractional derivative model of real solid materials
-
DOI 10.1006/jsvi.1996.0406
-
T. Pritz Analysis of four-parameter fractional derivative model of real solid materials J. Sound Vib. 195 1 1996 103 115 (Pubitemid 126387254)
-
(1996)
Journal of Sound and Vibration
, vol.195
, Issue.1
, pp. 103-115
-
-
Pritz, T.1
-
29
-
-
0036701004
-
Fractional variational calculus in terms of Riesz fractional derivatives
-
O.P. Agrawal Fractional variational calculus in terms of Riesz fractional derivatives J. Math. Anal. Appl. 272 2002 368 379
-
(2002)
J. Math. Anal. Appl.
, vol.272
, pp. 368-379
-
-
Agrawal, O.P.1
-
32
-
-
23344444772
-
Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives
-
D. Baleanu, and S. Muslih Lagrangian, formulation of classical fields within Riemann-Liouville fractional derivatives Phys. Scr. 72 2005 119 121 (Pubitemid 41101668)
-
(2005)
Physica Scripta
, vol.72
, Issue.2-3
, pp. 119-121
-
-
Baleanu, D.1
Muslih, S.I.2
-
33
-
-
15544380308
-
Fractional trigonometry and the spiral functions
-
DOI 10.1007/s11071-004-3745-9
-
C.F. Lorenzo, and T.T. Hartley Fractional trigonometry and the spiral functions Nonlinear Dynam. 38 2004 23 60 (Pubitemid 40400606)
-
(2004)
Nonlinear Dynamics
, vol.38
, Issue.1-4
, pp. 23-60
-
-
Lorenzo, C.F.1
Hartley, T.T.2
-
34
-
-
34250648556
-
A formulation of Noether's theorem for fractional problems of the calculus of variations
-
G.S.F. Frederico, and D.F.M. Torres A formulation of Noether's theorem for fractional problems of the calculus of variations J. Math. Anal. Appl. 334 2007 834 846
-
(2007)
J. Math. Anal. Appl.
, vol.334
, pp. 834-846
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
-
35
-
-
53149131751
-
Fractional Poisson bracket
-
K. Golmankhaneh Alireza Fractional Poisson bracket Turkish J. Phys. 32 2008 241 250
-
(2008)
Turkish J. Phys.
, vol.32
, pp. 241-250
-
-
Alireza, K.G.1
-
36
-
-
34047097242
-
Fractional embedding of differential operators and Lagrangian systems
-
J. Cresson Fractional embedding of differential operators and Lagrangian systems J. Math. Phys. 48 2007 033504
-
(2007)
J. Math. Phys.
, vol.48
, pp. 033504
-
-
Cresson, J.1
-
37
-
-
0036027310
-
Fractional sequential mechanics-models with symmetric fractional derivatives
-
K. Klimek Fractional sequential mechanics-models with symmetric fractional derivatives Czech. J. Phys. 52 2002 1247 1253
-
(2002)
Czech. J. Phys.
, vol.52
, pp. 1247-1253
-
-
Klimek, K.1
-
38
-
-
46249125645
-
Fractional conservation laws in optimal control theory
-
G.S.F. Frederico, and D.F.M. Torres Fractional conservation laws in optimal control theory Nonlinear Dynam. 53 3 2008 215 222
-
(2008)
Nonlinear Dynam.
, vol.53
, Issue.3
, pp. 215-222
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
-
39
-
-
33745967716
-
Fractional calculus applications in signals and systems
-
DOI 10.1016/j.sigpro.2006.02.001, PII S0165168406000375, Fractional Calculus Applications in Signals and Systems
-
M.D. Ortigueira, and J.A. Tenreiro Machado Fractional calculus applications in signals and systems Signal Process. 86 10 2006 2503 2504 Elsevier (special issue) (Pubitemid 44055898)
-
(2006)
Signal Processing
, vol.86
, Issue.10
, pp. 2503-2504
-
-
Ortigueira, M.D.1
Machado, J.A.T.2
-
40
-
-
79960988286
-
Fractional differentiation and its applications
-
Sage Pub, (special issue)
-
M.D. Ortigueira, and J.A. Tenreiro Machado Fractional differentiation and its applications J. Vib. Control 14 910 2008 1253 Sage Pub, (special issue)
-
(2008)
J. Vib. Control
, vol.14
, Issue.910
, pp. 1253
-
-
Ortigueira, M.D.1
Tenreiro MacHado, J.A.2
-
42
-
-
70349224466
-
Fractional-order Euler-Lagrange equations and formulation of Hamiltonian equations
-
A.E.H. Mohamed, and D. Baleanu Fractional-order Euler-Lagrange equations and formulation of Hamiltonian equations Nonlinear Dyn. 58 2009 385 391
-
(2009)
Nonlinear Dyn.
, vol.58
, pp. 385-391
-
-
Mohamed, A.E.H.1
Baleanu, D.2
-
43
-
-
44649143140
-
Fractional action like variational problems
-
R.A. El-Nabulsi, and D.F.M. Torres Fractional action like variational problems J. Math. Phys. 49 2008 053521
-
(2008)
J. Math. Phys.
, vol.49
, pp. 053521
-
-
El-Nabulsi, R.A.1
Torres, D.F.M.2
-
44
-
-
77952662203
-
Modifications at large distances from fractional and fractal arguments
-
R.A. El-Nabulsi Modifications at large distances from fractional and fractal arguments Fractals 18 2 2010 185 190
-
(2010)
Fractals
, vol.18
, Issue.2
, pp. 185-190
-
-
El-Nabulsi, R.A.1
-
45
-
-
67650832630
-
Black hole growth and accretion energy from fractional actionlike variational approach
-
R.A. El-Nabulsi Black hole growth and accretion energy from fractional actionlike variational approach Fizika B 17 3 2008 369 378
-
(2008)
Fizika B
, vol.17
, Issue.3
, pp. 369-378
-
-
El-Nabulsi, R.A.1
-
46
-
-
67649610631
-
On the fractional minimal length HeisenbergWeyl uncertainty relation from fractional Riccati generalized momentum operator
-
R.A. El-Nabulsi On the fractional minimal length HeisenbergWeyl uncertainty relation from fractional Riccati generalized momentum operator Chaos Solitons Fractals 42 2009 84 88
-
(2009)
Chaos Solitons Fractals
, vol.42
, pp. 84-88
-
-
El-Nabulsi, R.A.1
-
47
-
-
34547165802
-
A fractional action-like variational approach of some classical, quantum and geometrical dynamic
-
R.A. El-Nabulsi A fractional action-like variational approach of some classical, quantum and geometrical dynamic Int. J. Appl. Math. 17 3 2005 299 317
-
(2005)
Int. J. Appl. Math.
, vol.17
, Issue.3
, pp. 299-317
-
-
El-Nabulsi, R.A.1
-
48
-
-
44649143140
-
Fractional action like variational problems
-
R.A. El-Nabulsi, and D.F.M. Torres Fractional action like variational problems J. Math. Phys. 49 2008 053521
-
(2008)
J. Math. Phys.
, vol.49
, pp. 053521
-
-
El-Nabulsi, R.A.1
Torres, D.F.M.2
-
49
-
-
77957235666
-
Universal fractional Euler-Lagrange equation from a generalized fractional derivate operator
-
R.A. El-Nabulsi Universal fractional Euler-Lagrange equation from a generalized fractional derivate operator Cent. Eur. J. Phys. 9 1 2010 250 256
-
(2010)
Cent. Eur. J. Phys.
, vol.9
, Issue.1
, pp. 250-256
-
-
El-Nabulsi, R.A.1
-
50
-
-
40249091381
-
New Hamiltonian structure of the fractional C-KdV soliton equation hierarchy
-
F.J. Yu, and H.Q. Zhang New Hamiltonian structure of the fractional C-KdV soliton equation hierarchy Chaos Solitons Fractals 37 2008 688 697
-
(2008)
Chaos Solitons Fractals
, vol.37
, pp. 688-697
-
-
Yu, F.J.1
Zhang, H.Q.2
-
51
-
-
70149086250
-
Integrable coupling system of fractional soliton equation hierarchy
-
F.J. Yu Integrable coupling system of fractional soliton equation hierarchy Phys. Lett. A 373 2009 3730 3733
-
(2009)
Phys. Lett. A
, vol.373
, pp. 3730-3733
-
-
Yu, F.J.1
-
52
-
-
36649001872
-
Fractional zero curvature equation and generalized Hamiltonian structure of soliton equation hierarchy
-
F.J. Yu, and H.Q. Zhang Fractional zero curvature equation and generalized Hamiltonian structure of soliton equation hierarchy Internat. J. Theoret. Phys. 46 2007 3182 3192
-
(2007)
Internat. J. Theoret. Phys.
, vol.46
, pp. 3182-3192
-
-
Yu, F.J.1
Zhang, H.Q.2
-
53
-
-
0035532262
-
Fractional differential forms
-
S.K. Cottrill, and M. Naber Fractional differential forms J. Math. Phys. 42 2001 2203 2212
-
(2001)
J. Math. Phys.
, vol.42
, pp. 2203-2212
-
-
Cottrill, S.K.1
Naber, M.2
-
54
-
-
21244457230
-
Fractional generalization of gradient and Hamiltonian systems
-
E. Tarasov Fractional generalization of gradient and Hamiltonian systems J. Phys. A 38 2005 5929 5943
-
(2005)
J. Phys. A
, vol.38
, pp. 5929-5943
-
-
Tarasov, E.1
-
56
-
-
0002128448
-
Fractional calculus
-
B. Ross Fractional calculus Math. Mag. 50 3 1977 115 122
-
(1977)
Math. Mag.
, vol.50
, Issue.3
, pp. 115-122
-
-
Ross, B.1
-
57
-
-
36549102254
-
The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems
-
G.T. Tu The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems J. Math. Phys. 30 2 1989 330 338
-
(1989)
J. Math. Phys.
, vol.30
, Issue.2
, pp. 330-338
-
-
Tu, G.T.1
-
58
-
-
36749109491
-
An exact solution for a derivative nonlinear Schrödinger equation
-
D.J. Kaup, and A.C. Newell An exact solution for a derivative nonlinear Schrödinger equation J. Math. Phys. 19 1978 798 801
-
(1978)
J. Math. Phys.
, vol.19
, pp. 798-801
-
-
Kaup, D.J.1
Newell, A.C.2
-
59
-
-
23744468657
-
The multi-component Tu hierarchy of soliton equations and its multi-component integrable couplings system
-
DOI 10.1088/1009-1963/14/2/005
-
T.C. Xia, H. Wang, and Y.F. Zhang The multi-component Tu hierarchy of soliton equations and its multi-component integrable couplings system Chin. Phys. 14 2 2005 247 250 (Pubitemid 41237607)
-
(2005)
Chinese Physics
, vol.14
, Issue.2
, pp. 247-250
-
-
Xia, T.-C.1
Wang, H.2
Zhang, Y.-F.3
-
60
-
-
23244436758
-
A type of multi-component integrable hierarchy
-
Y.F. Zhang, and Y.S. Zhang A type of multi-component integrable hierarchy Chin. Phys. 13 8 2004 1183 1186
-
(2004)
Chin. Phys.
, vol.13
, Issue.8
, pp. 1183-1186
-
-
Zhang, Y.F.1
Zhang, Y.S.2
-
61
-
-
0034311570
-
Integrable evolution systems based on GerdjikovIvanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation
-
E.G. Fan Integrable evolution systems based on GerdjikovIvanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation J. Math. Phys. 41 11 2000 7769 7782
-
(2000)
J. Math. Phys.
, vol.41
, Issue.11
, pp. 7769-7782
-
-
Fan, E.G.1
-
62
-
-
17544403706
-
Enlarging spectral problems to construct integrable couplings of soliton equations
-
W.X. Ma Enlarging spectral problems to construct integrable couplings of soliton equations Phys. Lett. A 316 2003 72 76
-
(2003)
Phys. Lett. A
, vol.316
, pp. 72-76
-
-
Ma, W.X.1
-
63
-
-
20444481030
-
A multi-component matrix loop algebra and a unified expression of the multi-component AKNS hierarchy and the multi-component BPT hierarchy
-
Y.F. Zhang A multi-component matrix loop algebra and a unified expression of the multi-component AKNS hierarchy and the multi-component BPT hierarchy Phys. Lett. A 342 2005 82 89
-
(2005)
Phys. Lett. A
, vol.342
, pp. 82-89
-
-
Zhang, Y.F.1
-
64
-
-
4544345712
-
The multi-component coupled Burgers hierarchy of soliton equations and its multi-component integrable couplings system with two arbitrary functions
-
T.C. Xia, F.J. Yu, and Y. Zhang The multi-component coupled Burgers hierarchy of soliton equations and its multi-component integrable couplings system with two arbitrary functions Physica A 343 2004 238 246
-
(2004)
Physica A
, vol.343
, pp. 238-246
-
-
Xia, T.C.1
Yu, F.J.2
Zhang, Y.3
-
65
-
-
24344496561
-
The multi-component TD hierarchy and its multi-component integrable coupling system with five arbitrary functions
-
F.J. Yu, T.C. Xia, and H.Q. Zhang The multi-component TD hierarchy and its multi-component integrable coupling system with five arbitrary functions Chaos Solitons Fractals 27 2006 1036 1041
-
(2006)
Chaos Solitons Fractals
, vol.27
, pp. 1036-1041
-
-
Yu, F.J.1
Xia, T.C.2
Zhang, H.Q.3
|