메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1592-1599

A-Optimal Non-negative Projection for image representation

Author keywords

[No Author keywords available]

Indexed keywords

CENTRAL PROBLEMS; DATA LABELS; DATA MATRICES; DATA REPRESENTATIONS; ENCODINGS; IMAGE DATA; IMAGE REPRESENTATIONS; INTRINSIC CHARACTERISTICS; LATENT STRUCTURES; MATRIX FACTORIZATIONS; NONNEGATIVE MATRIX FACTORIZATION; NOVEL ALGORITHM; REAL-WORLD APPLICATION; REGULARIZER; ROBUST DATUM;

EID: 84866683313     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6247851     Document Type: Conference Paper
Times cited : (15)

References (27)
  • 3
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural computation, 15(6):1373-1396, 2003.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 4
    • 0019229529 scopus 로고
    • Monitoring land-cover change by principal component analysis of multitemporal landsat data
    • G. Byrne, P. Crapper, and K. Mayo. Monitoring land-cover change by principal component analysis of multitemporal landsat data. Remote Sensing of Environment, 10(3):175-184, 1980.
    • (1980) Remote Sensing of Environment , vol.10 , Issue.3 , pp. 175-184
    • Byrne, G.1    Crapper, P.2    Mayo, K.3
  • 11
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. Hoyer. Non-negative matrix factorization with sparseness constraints. The Journal of Machine Learning Research, 5:1457-1469, 2004.
    • (2004) The Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.1
  • 12
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • D. Lee and H. Seung. Learning the parts of objects by nonnegative matrix factorization. Nature, 401(6755):788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 17
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91-110, 2004.
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 18
    • 0024056708 scopus 로고
    • Image coding using vector quantization: A review
    • N. Nasrabadi and R. King. Image coding using vector quantization: A review. IEEE Transactions on Communications, 36(8):957-971, 1988.
    • (1988) IEEE Transactions on Communications , vol.36 , Issue.8 , pp. 957-971
    • Nasrabadi, N.1    King, R.2
  • 24
    • 0034800371 scopus 로고    scopus 로고
    • Principal component analysis for clustering gene expression data
    • K. Yeung and W. Ruzzo. Principal component analysis for clustering gene expression data. Bioinformatics, 17(9):763, 2001.
    • (2001) Bioinformatics , vol.17 , Issue.9 , pp. 763
    • Yeung, K.1    Ruzzo, W.2
  • 26
    • 0031234213 scopus 로고    scopus 로고
    • Face recognition: Eigenface, elastic matching, and neural nets
    • J. Zhang, Y. Yan, and M. Lades. Face recognition: eigenface, elastic matching, and neural nets. Proceedings of the IEEE, 85(9):1423-1435, 1997.
    • (1997) Proceedings of the IEEE , vol.85 , Issue.9 , pp. 1423-1435
    • Zhang, J.1    Yan, Y.2    Lades, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.