메뉴 건너뛰기




Volumn 6, Issue 2, 2011, Pages 192-200

Robust non-negative matrix factorization

Author keywords

convex optimization; dimensionality reduction; robust non negative matrix factorization (RNMF)

Indexed keywords


EID: 79958696304     PISSN: 16733460     EISSN: 16733584     Source Type: Journal    
DOI: 10.1007/s11460-011-0128-0     Document Type: Article
Times cited : (125)

References (20)
  • 3
    • 1042275194 scopus 로고    scopus 로고
    • Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Technical report
    • Fodor I K. A survey of dimension reduction techniques. Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Technical report, 2002.
    • (2002) Survey of dimension reduction techniques
    • Fodor I, K.A.1
  • 6
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization. Nature, 1999, 401(6755): 788-791.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 7
    • 0004622494 scopus 로고    scopus 로고
    • A singularly valuable decomposition: the svd of a matrix
    • Kalman D. A singularly valuable decomposition: the svd of a matrix. The College Mathematics Journal, 1996, 27(1): 2-23.
    • (1996) The College Mathematics Journal , vol.27 , Issue.1 , pp. 2-23
    • Kalman, D.1
  • 10
    • 23044534893 scopus 로고    scopus 로고
    • Non-negative matrix factorization for face recognition
    • In: Escrig M, Toledo F, Golobardes E, eds, Lecture Notes in Computer Science
    • Guillamet D, Vitrià J. Non-negative matrix factorization for face recognition. In: Escrig M, Toledo F, Golobardes E, eds. Topics in Artificial Intelligence. Lecture Notes in Computer Science, 2002, 2504: 336-344.
    • (2002) Topics in Artificial Intelligence , vol.2504 , pp. 336-344
    • Guillamet, D.1    Vitrià, J.2
  • 15
    • 84863367863 scopus 로고    scopus 로고
    • Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization
    • Wright J, Ganesh A, Rao S, Peng Y, Ma Y. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. Advances in Neural Information Processing Systems, 2009, 22: 2080-2088.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 2080-2088
    • Wright, J.1    Ganesh, A.2    Rao, S.3    Peng, Y.4    Ma, Y.5
  • 16
    • 34548051389 scopus 로고    scopus 로고
    • Multiplicative updates for nonnegative quadratic programming
    • Sha F, Lin Y, Saul L K, Lee D D. Multiplicative updates for nonnegative quadratic programming. Neural Computation, 2007, 19(8): 2004-2031.
    • (2007) Neural Computation , vol.19 , Issue.8 , pp. 2004-2031
    • Sha, F.1    Lin, Y.2    Saul, L.K.3    Lee, D.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.