메뉴 건너뛰기




Volumn , Issue , 2012, Pages 3394-3401

Conditional regression forests for human pose estimation

Author keywords

[No Author keywords available]

Indexed keywords

BODY PARTS; COMPUTATIONAL COSTS; DEPENDENCY RELATIONSHIP; DEPTH IMAGE; FOREST MODELS; HIGH-LEVEL COMPUTER VISION; HUMAN HEIGHT; HUMAN POSE ESTIMATIONS; HUMAN SUBJECTS; LATENT VARIABLE; LOCATION PREDICTION; OBJECT SEGMENTATION; OUTPUT VARIABLES; POSE ESTIMATION; PRIOR KNOWLEDGE; PROBLEM INSTANCES; RANDOM FORESTS; REGRESSION MODEL; STATE-OF-THE-ART METHODS; TEMPORAL MODELS;

EID: 84866654638     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6248079     Document Type: Conference Paper
Times cited : (157)

References (33)
  • 1
    • 5044228983 scopus 로고    scopus 로고
    • 3D human pose from silhouettes by relevance vector regression
    • 2
    • A. Agarwal and B. Triggs. 3D human pose from silhouettes by relevance vector regression. In CVPR, 2004. 2
    • (2004) CVPR
    • Agarwal, A.1    Triggs, B.2
  • 2
    • 70450203723 scopus 로고    scopus 로고
    • Pictorial structures revisited: People detection and articulated pose estimation
    • 2
    • M. Andriluka, S. Roth, and B. Schiele. Pictorial structures revisited: People detection and articulated pose estimation. In CVPR, 2009. 2
    • (2009) CVPR
    • Andriluka, M.1    Roth, S.2    Schiele, B.3
  • 3
    • 70450192619 scopus 로고    scopus 로고
    • Structured output-associative regression
    • 2
    • L. Bo and C. Sminchisescu. Structured output-associative regression. In CVPR, 2009. 2
    • (2009) CVPR
    • Bo, L.1    Sminchisescu, C.2
  • 4
    • 51949094782 scopus 로고    scopus 로고
    • Fast algorithms for large scale conditional 3D prediction
    • 2
    • L. Bo, C. Sminchisescu, A. Kanaujia, and D. Metaxas. Fast algorithms for large scale conditional 3D prediction. In CVPR, 2008. 2
    • (2008) CVPR
    • Bo, L.1    Sminchisescu, C.2    Kanaujia, A.3    Metaxas, D.4
  • 5
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: A robust approach toward feature space analysis
    • 4
    • D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. PAMI, 2002. 4
    • (2002) PAMI
    • Comaniciu, D.1    Meer, P.2
  • 6
    • 84866706750 scopus 로고    scopus 로고
    • Real-time facial feature detection using conditional regression forests
    • 2
    • M. Dantone, J. Gall, G. Fanelli, and L. V. Gool. Real-time facial feature detection using conditional regression forests. In CVPR, 2012. 2
    • (2012) CVPR
    • Dantone, M.1    Gall, J.2    Fanelli, G.3    Gool, L.V.4
  • 7
    • 84898906904 scopus 로고    scopus 로고
    • Better appearance models for pictorial structures
    • 2
    • M. Eichner and V. Ferrari. Better appearance models for pictorial structures. In BMVC, 2009. 2
    • (2009) BMVC
    • Eichner, M.1    Ferrari, V.2
  • 8
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part based models
    • 2
    • P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. PAMI, 2010. 2
    • (2010) PAMI
    • Felzenszwalb, P.1    Girshick, R.2    McAllester, D.3    Ramanan, D.4
  • 9
    • 4644354464 scopus 로고    scopus 로고
    • Pictorial structures for object recognition
    • 2
    • P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object recognition. IJCV, 2005. 2
    • (2005) IJCV
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 10
    • 80053120334 scopus 로고    scopus 로고
    • Hough forests for object detection, tracking, and action recognition
    • 1
    • J. Gall, A. Yao, N. Razavi, L. J. V. Gool, and V. S. Lempitsky. Hough forests for object detection, tracking, and action recognition. PAMI, 2011. 1
    • (2011) PAMI
    • Gall, J.1    Yao, A.2    Razavi, N.3    Gool, L.J.V.4    Lempitsky, V.S.5
  • 11
    • 77955990817 scopus 로고    scopus 로고
    • Real time motion capture using a single time-of-flight camera
    • 2
    • V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun. Real time motion capture using a single time-of-flight camera. In CVPR, 2010. 2
    • (2010) CVPR
    • Ganapathi, V.1    Plagemann, C.2    Koller, D.3    Thrun, S.4
  • 12
    • 84856653054 scopus 로고    scopus 로고
    • Efficient regression of general-activity human poses from depth images
    • 1, 2, 3, 4, 5, 6, 7
    • R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and A. Fitzgibbon. Efficient regression of general-activity human poses from depth images. In ICCV, 2011. 1, 2, 3, 4, 5, 6, 7
    • (2011) ICCV
    • Girshick, R.1    Shotton, J.2    Kohli, P.3    Criminisi, A.4    Fitzgibbon, A.5
  • 13
    • 84866715015 scopus 로고    scopus 로고
    • Nonlinear body pose estimation from depth images
    • 2
    • D. Grest, J. Woetzel, and R. Koch. Nonlinear body pose estimation from depth images. In DAGM, 2009. 2
    • (2009) DAGM
    • Grest, D.1    Woetzel, J.2    Koch, R.3
  • 14
    • 34948816627 scopus 로고    scopus 로고
    • Semi-supervised hierarchical models for 3D human pose reconstruction
    • 2
    • A. Kanaujia, C. Sminchisescu, and D. Metaxas. Semi-supervised hierarchical models for 3D human pose reconstruction. In CVPR, 2007. 2
    • (2007) CVPR
    • Kanaujia, A.1    Sminchisescu, C.2    Metaxas, D.3
  • 15
    • 33845635718 scopus 로고    scopus 로고
    • Sensor fusion for 3D human body tracking with an articulated 3D body model
    • 2
    • S. Knoop, S. Vacek, and R. Dillmann. Sensor fusion for 3D human body tracking with an articulated 3D body model. In ICRA, 2006. 2
    • (2006) ICRA
    • Knoop, S.1    Vacek, S.2    Dillmann, R.3
  • 17
    • 24644494804 scopus 로고    scopus 로고
    • Randomized trees for real-time keypoint recognition
    • 5
    • V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-time keypoint recognition. In CVPR, 2005. 5
    • (2005) CVPR
    • Lepetit, V.1    Lagger, P.2    Fua, P.3
  • 18
    • 85138467131 scopus 로고    scopus 로고
    • People tracking with laplacian eigenmaps latent variable models
    • 2
    • Z. Lu, M. A. Carreira-Perpinan, and C. Sminchisescu. People tracking with laplacian eigenmaps latent variable models. In NIPS, 2009. 2
    • (2009) NIPS
    • Lu, Z.1    Carreira-Perpinan, M.A.2    Sminchisescu, C.3
  • 19
    • 84857416741 scopus 로고    scopus 로고
    • Shared kernel information embedding for discriminative inference
    • 2
    • R. Memisevic, L. Sigal, and D. J. Fleet. Shared kernel information embedding for discriminative inference. PAMI, 2012. 2
    • (2012) PAMI
    • Memisevic, R.1    Sigal, L.2    Fleet, D.J.3
  • 20
    • 84866694465 scopus 로고    scopus 로고
    • Microsoft Corp. Redmond WA. Kinect for Xbox 360. 2
    • Microsoft Corp. Redmond WA. Kinect for Xbox 360. 2
  • 21
    • 33749990780 scopus 로고    scopus 로고
    • A survey of advances in vision-based human motion capture and analysis
    • 2
    • T. Moeslund, A. Hilton, and V. Krüger. A survey of advances in vision-based human motion capture and analysis. CVIU, 2006. 2
    • (2006) CVIU
    • Moeslund, T.1    Hilton, A.2    Krüger, V.3
  • 22
  • 23
    • 50649114839 scopus 로고    scopus 로고
    • The joint manifold model for semi-supervised multi-valued regression
    • 2
    • R. Navaratnam, A. W. Fitzgibbon, and R. Cipolla. The joint manifold model for semi-supervised multi-valued regression. In ICCV, 2007. 2
    • (2007) ICCV
    • Navaratnam, R.1    Fitzgibbon, A.W.2    Cipolla, R.3
  • 25
    • 77955805979 scopus 로고    scopus 로고
    • Real-time identification and localization of body parts from depth images
    • 2
    • C. Plagemann, V. Ganapathi, D. Koller, and S. Thrun. Real-time identification and localization of body parts from depth images. In ICRA, 2010. 2
    • (2010) ICRA
    • Plagemann, C.1    Ganapathi, V.2    Koller, D.3    Thrun, S.4
  • 26
    • 34548203757 scopus 로고    scopus 로고
    • Vision-based human motion analysis: An overview
    • 2
    • R. Poppe. Vision-based human motion analysis: An overview. CVIU, 2007. 2
    • (2007) CVIU
    • Poppe, R.1
  • 27
    • 24644504137 scopus 로고    scopus 로고
    • Strike a pose: Tracking people by finding stylized poses
    • 2
    • D. Ramanan, D. A. Forsyth, and A. Zisserman. Strike a pose: Tracking people by finding stylized poses. In CVPR, 2005. 2
    • (2005) CVPR
    • Ramanan, D.1    Forsyth, D.A.2    Zisserman, A.3
  • 28
    • 77953852039 scopus 로고    scopus 로고
    • Real-time hand-tracking with a color glove
    • 2
    • R.Wang and J. Popović. Real-time hand-tracking with a color glove. In Proc. ACM SIGGRAPH, 2002. 2
    • (2002) Proc. SIGGRAPH
    • Wang, R.1    Popović, J.2
  • 30
    • 77956498714 scopus 로고    scopus 로고
    • Human pose estimation from a single view point, real-time range sensor
    • 2
    • M. Siddiqui and G. Medioni. Human pose estimation from a single view point, real-time range sensor. In CVCG at CVPR, 2010. 2
    • (2010) CVCG at CVPR
    • Siddiqui, M.1    Medioni, G.2
  • 31
    • 0042420029 scopus 로고    scopus 로고
    • Implicit probabilistic models of human motion for synthesis and tracking
    • 2
    • H. Sidenbladh, M. Black, and L. Sigal. Implicit probabilistic models of human motion for synthesis and tracking. In ECCV, 2002. 2
    • (2002) ECCV
    • Sidenbladh, H.1    Black, M.2    Sigal, L.3
  • 33
    • 51949116853 scopus 로고    scopus 로고
    • Local probabilistic regression for activity-independent human pose inference
    • 2
    • R. Urtasun and T. Darrell. Local probabilistic regression for activity-independent human pose inference. In CVPR, 2008. 2
    • (2008) CVPR
    • Urtasun, R.1    Darrell, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.