메뉴 건너뛰기




Volumn 28, Issue 10, 2012, Pages 408-416

The diverse roles of monocytes in inflammation caused by protozoan parasitic diseases

Author keywords

Dendritic cells; Macrophages; Monocytes; Protozoan parasites

Indexed keywords

CD11B ANTIGEN; CHEMOKINE RECEPTOR CCR2; INDUCIBLE NITRIC OXIDE SYNTHASE; TUMOR NECROSIS FACTOR;

EID: 84866511135     PISSN: 14714922     EISSN: 14715007     Source Type: Journal    
DOI: 10.1016/j.pt.2012.07.008     Document Type: Review
Times cited : (20)

References (56)
  • 1
    • 0037963473 scopus 로고    scopus 로고
    • Blood monocytes consist of two principal subsets with distinct migratory properties
    • Geissmann F., et al. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003, 19:71-82.
    • (2003) Immunity , vol.19 , pp. 71-82
    • Geissmann, F.1
  • 2
    • 0014325451 scopus 로고
    • The origin and kinetics of mononuclear phagocytes
    • van Furth R., Cohn Z.A. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 1968, 128:415-435.
    • (1968) J. Exp. Med. , vol.128 , pp. 415-435
    • van Furth, R.1    Cohn, Z.A.2
  • 3
    • 77952887297 scopus 로고    scopus 로고
    • Unravelling mononuclear phagocyte heterogeneity
    • Geissmann F., et al. Unravelling mononuclear phagocyte heterogeneity. Nat. Rev. Immunol. 2010, 10:453-460.
    • (2010) Nat. Rev. Immunol. , vol.10 , pp. 453-460
    • Geissmann, F.1
  • 4
    • 39149113772 scopus 로고    scopus 로고
    • Antigen presentation by monocytes and monocyte-derived cells
    • Randolph G.J., et al. Antigen presentation by monocytes and monocyte-derived cells. Curr. Opin. Immunol. 2008, 20:52-60.
    • (2008) Curr. Opin. Immunol. , vol.20 , pp. 52-60
    • Randolph, G.J.1
  • 5
    • 68149119072 scopus 로고    scopus 로고
    • Identification of splenic reservoir monocytes and their deployment to inflammatory sites
    • Swirski F.K., et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009, 325:612-616.
    • (2009) Science , vol.325 , pp. 612-616
    • Swirski, F.K.1
  • 6
    • 79958265461 scopus 로고    scopus 로고
    • Platelet activation attracts a subpopulation of effector monocytes to sites of Leishmania major infection
    • Goncalves R., et al. Platelet activation attracts a subpopulation of effector monocytes to sites of Leishmania major infection. J. Exp. Med. 2011, 208:1253-1265.
    • (2011) J. Exp. Med. , vol.208 , pp. 1253-1265
    • Goncalves, R.1
  • 7
    • 33645902493 scopus 로고    scopus 로고
    • Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2
    • Serbina N.V., Pamer E.G. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 2006, 7:311-317.
    • (2006) Nat. Immunol. , vol.7 , pp. 311-317
    • Serbina, N.V.1    Pamer, E.G.2
  • 8
    • 84859944388 scopus 로고    scopus 로고
    • Fungi subvert vaccine T cell priming at the respiratory mucosa by preventing chemokine-induced influx of inflammatory monocytes
    • Wuthrich M., et al. Fungi subvert vaccine T cell priming at the respiratory mucosa by preventing chemokine-induced influx of inflammatory monocytes. Immunity 2012, 36:680-692.
    • (2012) Immunity , vol.36 , pp. 680-692
    • Wuthrich, M.1
  • 9
    • 80053322451 scopus 로고    scopus 로고
    • Monocyte trafficking in acute and chronic inflammation
    • Ingersoll M.A., et al. Monocyte trafficking in acute and chronic inflammation. Trends Immunol. 2011, 32:470-477.
    • (2011) Trends Immunol. , vol.32 , pp. 470-477
    • Ingersoll, M.A.1
  • 10
    • 0035168403 scopus 로고    scopus 로고
    • New mechanisms and pathways for monocyte recruitment
    • Muller W.A. New mechanisms and pathways for monocyte recruitment. J. Exp. Med. 2001, 194:F47-F51.
    • (2001) J. Exp. Med. , vol.194
    • Muller, W.A.1
  • 11
    • 80355146868 scopus 로고    scopus 로고
    • Monocyte recruitment during infection and inflammation
    • Shi C., Pamer E.G. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 2011, 11:762-774.
    • (2011) Nat. Rev. Immunol. , vol.11 , pp. 762-774
    • Shi, C.1    Pamer, E.G.2
  • 13
    • 34247104151 scopus 로고    scopus 로고
    • Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania
    • Leon B., et al. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 2007, 26:519-531.
    • (2007) Immunity , vol.26 , pp. 519-531
    • Leon, B.1
  • 14
    • 0037625155 scopus 로고    scopus 로고
    • TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection
    • Serbina N.V., et al. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 2003, 19:59-70.
    • (2003) Immunity , vol.19 , pp. 59-70
    • Serbina, N.V.1
  • 15
    • 42649108339 scopus 로고    scopus 로고
    • Monocyte-mediated defense against microbial pathogens
    • Serbina N.V., et al. Monocyte-mediated defense against microbial pathogens. Annu. Rev. Immunol. 2008, 26:421-452.
    • (2008) Annu. Rev. Immunol. , vol.26 , pp. 421-452
    • Serbina, N.V.1
  • 16
    • 79958715229 scopus 로고    scopus 로고
    • Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation
    • Jenkins S.J., et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 2011, 332:1284-1288.
    • (2011) Science , vol.332 , pp. 1284-1288
    • Jenkins, S.J.1
  • 17
    • 34547728312 scopus 로고    scopus 로고
    • Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior
    • Auffray C., et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007, 317:666-670.
    • (2007) Science , vol.317 , pp. 666-670
    • Auffray, C.1
  • 18
    • 0037769059 scopus 로고    scopus 로고
    • Monocyte heterogeneity and innate immunity
    • Taylor P.R., Gordon S. Monocyte heterogeneity and innate immunity. Immunity 2003, 19:2-4.
    • (2003) Immunity , vol.19 , pp. 2-4
    • Taylor, P.R.1    Gordon, S.2
  • 19
    • 30144437878 scopus 로고    scopus 로고
    • + monocytes in human cutaneous leishmaniasis: increased ex vivo levels and correlation with clinical data
    • + monocytes in human cutaneous leishmaniasis: increased ex vivo levels and correlation with clinical data. J. Leukoc. Biol. 2006, 79:36-39.
    • (2006) J. Leukoc. Biol. , vol.79 , pp. 36-39
    • Soares, G.1
  • 20
    • 84856815290 scopus 로고    scopus 로고
    • Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon
    • Rivollier A., et al. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J. Exp. Med. 2012, 209:139-155.
    • (2012) J. Exp. Med. , vol.209 , pp. 139-155
    • Rivollier, A.1
  • 21
    • 0024450489 scopus 로고
    • Identification and characterization of a novel monocyte subpopulation in human peripheral blood
    • Passlick B., et al. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 1989, 74:2527-2534.
    • (1989) Blood , vol.74 , pp. 2527-2534
    • Passlick, B.1
  • 22
    • 77958185103 scopus 로고    scopus 로고
    • Nomenclature of monocytes and dendritic cells in blood
    • Ziegler-Heitbrock L., et al. Nomenclature of monocytes and dendritic cells in blood. Blood 2010, 116:e74-e80.
    • (2010) Blood , vol.116
    • Ziegler-Heitbrock, L.1
  • 23
    • 77957020717 scopus 로고    scopus 로고
    • Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors
    • Cros J., et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 2010, 33:375-386.
    • (2010) Immunity , vol.33 , pp. 375-386
    • Cros, J.1
  • 24
    • 33846408655 scopus 로고    scopus 로고
    • Monocytes give rise to mucosal, but not splenic, conventional dendritic cells
    • Varol C., et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med. 2007, 204:171-180.
    • (2007) J. Exp. Med. , vol.204 , pp. 171-180
    • Varol, C.1
  • 25
    • 77449102329 scopus 로고    scopus 로고
    • Comparison of gene expression profiles between human and mouse monocyte subsets
    • Ingersoll M.A., et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 2010, 115:e10-e19.
    • (2010) Blood , vol.115
    • Ingersoll, M.A.1
  • 26
    • 33645088198 scopus 로고    scopus 로고
    • Immature monocytes acquire antigens from other cells in the bone marrow and present them to T cells after maturing in the periphery
    • Tacke F., et al. Immature monocytes acquire antigens from other cells in the bone marrow and present them to T cells after maturing in the periphery. J. Exp. Med. 2006, 203:583-597.
    • (2006) J. Exp. Med. , vol.203 , pp. 583-597
    • Tacke, F.1
  • 27
    • 1642406217 scopus 로고    scopus 로고
    • Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response
    • Sunderkotter C., et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J. Immunol. 2004, 172:4410-4417.
    • (2004) J. Immunol. , vol.172 , pp. 4410-4417
    • Sunderkotter, C.1
  • 28
    • 63449110370 scopus 로고    scopus 로고
    • + common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation
    • + common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J. Exp. Med. 2009, 206:595-606.
    • (2009) J. Exp. Med. , vol.206 , pp. 595-606
    • Auffray, C.1
  • 29
    • 48749107414 scopus 로고    scopus 로고
    • + inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii
    • + inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii. Immunity 2008, 29:306-317.
    • (2008) Immunity , vol.29 , pp. 306-317
    • Dunay, I.R.1
  • 30
    • 22344454821 scopus 로고    scopus 로고
    • + monocytes is essential for control of acute toxoplasmosis
    • + monocytes is essential for control of acute toxoplasmosis. J. Exp. Med. 2005, 201:1761-1769.
    • (2005) J. Exp. Med. , vol.201 , pp. 1761-1769
    • Robben, P.M.1
  • 31
    • 84863007648 scopus 로고    scopus 로고
    • NK Cell-derived interferon-gamma orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection
    • Goldszmid R.S., et al. NK Cell-derived interferon-gamma orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. Immunity 2012, 36:1047-1059.
    • (2012) Immunity , vol.36 , pp. 1047-1059
    • Goldszmid, R.S.1
  • 32
    • 67650869758 scopus 로고    scopus 로고
    • INOS-producing inflammatory dendritic cells constitute the major infected cell type during the chronic Leishmania major infection phase of C57BL/6 resistant mice
    • De Trez C., et al. iNOS-producing inflammatory dendritic cells constitute the major infected cell type during the chronic Leishmania major infection phase of C57BL/6 resistant mice. PLoS Pathog. 2009, 5:e1000494.
    • (2009) PLoS Pathog. , vol.5
    • De Trez, C.1
  • 33
    • 0242584877 scopus 로고    scopus 로고
    • Amastigote load and cell surface phenotype of infected cells from lesions and lymph nodes of susceptible and resistant mice infected with Leishmania major
    • Muraille E., et al. Amastigote load and cell surface phenotype of infected cells from lesions and lymph nodes of susceptible and resistant mice infected with Leishmania major. Infect. Immun. 2003, 71:2704-2715.
    • (2003) Infect. Immun. , vol.71 , pp. 2704-2715
    • Muraille, E.1
  • 34
    • 0035869456 scopus 로고    scopus 로고
    • Rapidly fatal leishmaniasis in resistant C57BL/6 mice lacking TNF
    • Wilhelm P., et al. Rapidly fatal leishmaniasis in resistant C57BL/6 mice lacking TNF. J. Immunol. 2001, 166:4012-4019.
    • (2001) J. Immunol. , vol.166 , pp. 4012-4019
    • Wilhelm, P.1
  • 35
    • 49649116869 scopus 로고    scopus 로고
    • In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies
    • Peters N.C., et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 2008, 321:970-974.
    • (2008) Science , vol.321 , pp. 970-974
    • Peters, N.C.1
  • 36
    • 0033571729 scopus 로고    scopus 로고
    • Defects in the generation of IFN-gamma are overcome to control infection with Leishmania donovani in CC chemokine receptor (CCR) 5-, macrophage inflammatory protein-1 alpha-, or CCR2-deficient mice
    • Sato N., et al. Defects in the generation of IFN-gamma are overcome to control infection with Leishmania donovani in CC chemokine receptor (CCR) 5-, macrophage inflammatory protein-1 alpha-, or CCR2-deficient mice. J. Immunol. 1999, 163:5519-5525.
    • (1999) J. Immunol. , vol.163 , pp. 5519-5525
    • Sato, N.1
  • 37
    • 80052494648 scopus 로고    scopus 로고
    • Compartment-specific remodeling of splenic micro-architecture during experimental visceral leishmaniasis
    • Yurdakul P., et al. Compartment-specific remodeling of splenic micro-architecture during experimental visceral leishmaniasis. Am. J. Pathol. 2011, 179:23-29.
    • (2011) Am. J. Pathol. , vol.179 , pp. 23-29
    • Yurdakul, P.1
  • 38
    • 76249109239 scopus 로고    scopus 로고
    • Migrating monocytes recruited to the spleen play an important role in control of blood stage malaria
    • Sponaas A.M., et al. Migrating monocytes recruited to the spleen play an important role in control of blood stage malaria. Blood 2009, 114:5522-5531.
    • (2009) Blood , vol.114 , pp. 5522-5531
    • Sponaas, A.M.1
  • 39
    • 77958124602 scopus 로고    scopus 로고
    • Tip-DC development during parasitic infection is regulated by IL-10 and requires CCL2/CCR2, IFN-gamma and MyD88 signaling
    • Bosschaerts T., et al. Tip-DC development during parasitic infection is regulated by IL-10 and requires CCL2/CCR2, IFN-gamma and MyD88 signaling. PLoS Pathog. 2010, 6:e1001045.
    • (2010) PLoS Pathog. , vol.6
    • Bosschaerts, T.1
  • 40
    • 60549106289 scopus 로고    scopus 로고
    • IL-10 dampens TNF/inducible nitric oxide synthase-producing dendritic cell-mediated pathogenicity during parasitic infection
    • Guilliams M., et al. IL-10 dampens TNF/inducible nitric oxide synthase-producing dendritic cell-mediated pathogenicity during parasitic infection. J. Immunol. 2009, 182:1107-1118.
    • (2009) J. Immunol. , vol.182 , pp. 1107-1118
    • Guilliams, M.1
  • 41
    • 68349122611 scopus 로고    scopus 로고
    • Understanding the role of monocytic cells in liver inflammation using parasite infection as a model
    • Bosschaerts T., et al. Understanding the role of monocytic cells in liver inflammation using parasite infection as a model. Immunobiology 2009, 214:737-747.
    • (2009) Immunobiology , vol.214 , pp. 737-747
    • Bosschaerts, T.1
  • 42
    • 52749098410 scopus 로고    scopus 로고
    • Role of iron homeostasis in trypanosomiasis-associated anemia
    • Stijlemans B., et al. Role of iron homeostasis in trypanosomiasis-associated anemia. Immunobiology 2008, 213:823-835.
    • (2008) Immunobiology , vol.213 , pp. 823-835
    • Stijlemans, B.1
  • 43
    • 33646932651 scopus 로고    scopus 로고
    • Chemokine CC receptor 2 is important for acute control of cardiac parasitism but does not contribute to cardiac inflammation after infection with Trypanosoma cruzi
    • Hardison J.L., et al. Chemokine CC receptor 2 is important for acute control of cardiac parasitism but does not contribute to cardiac inflammation after infection with Trypanosoma cruzi. J. Infect. Dis. 2006, 193:1584-1588.
    • (2006) J. Infect. Dis. , vol.193 , pp. 1584-1588
    • Hardison, J.L.1
  • 44
    • 0034028817 scopus 로고    scopus 로고
    • Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion
    • Jung S., et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 2000, 20:4106-4114.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 4106-4114
    • Jung, S.1
  • 45
    • 34548013962 scopus 로고    scopus 로고
    • Alternatively activated macrophages in protozoan infections
    • Raes G., et al. Alternatively activated macrophages in protozoan infections. Curr. Opin. Immunol. 2007, 19:454-459.
    • (2007) Curr. Opin. Immunol. , vol.19 , pp. 454-459
    • Raes, G.1
  • 46
    • 82355192251 scopus 로고    scopus 로고
    • Characterisation of antimony-resistant Leishmania donovani isolates: biochemical and biophysical studies and interaction with host cells
    • Mukhopadhyay R., et al. Characterisation of antimony-resistant Leishmania donovani isolates: biochemical and biophysical studies and interaction with host cells. Int. J. Parasitol. 2011, 41:1311-1321.
    • (2011) Int. J. Parasitol. , vol.41 , pp. 1311-1321
    • Mukhopadhyay, R.1
  • 47
    • 0036892199 scopus 로고    scopus 로고
    • Antimonial therapy induces circulating proinflammatory cytokines in patients with cutaneous leishmaniasis
    • Kocyigit A., et al. Antimonial therapy induces circulating proinflammatory cytokines in patients with cutaneous leishmaniasis. Infect. Immun. 2002, 70:6589-6591.
    • (2002) Infect. Immun. , vol.70 , pp. 6589-6591
    • Kocyigit, A.1
  • 48
    • 78651077510 scopus 로고    scopus 로고
    • Toward a functional characterization of blood monocytes
    • Saha P., Geissmann F. Toward a functional characterization of blood monocytes. Immunol. Cell Biol. 2011, 89:2-4.
    • (2011) Immunol. Cell Biol. , vol.89 , pp. 2-4
    • Saha, P.1    Geissmann, F.2
  • 49
    • 0037135659 scopus 로고    scopus 로고
    • +) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting
    • +) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting. J. Exp. Med. 2002, 196:517-527.
    • (2002) J. Exp. Med. , vol.196 , pp. 517-527
    • Randolph, G.J.1
  • 50
    • 81255195755 scopus 로고    scopus 로고
    • Severe malarial anemia: innate immunity and pathogenesis
    • Perkins D.J., et al. Severe malarial anemia: innate immunity and pathogenesis. Int. J. Biol. Sci. 2011, 7:1427-1442.
    • (2011) Int. J. Biol. Sci. , vol.7 , pp. 1427-1442
    • Perkins, D.J.1
  • 51
    • 80052834764 scopus 로고    scopus 로고
    • Monocytes and macrophages and placental malaria infections in an area of unstable malaria transmission in eastern Sudan
    • Salih M.M., et al. Monocytes and macrophages and placental malaria infections in an area of unstable malaria transmission in eastern Sudan. Diagn. Pathol. 2011, 6:83.
    • (2011) Diagn. Pathol. , vol.6 , pp. 83
    • Salih, M.M.1
  • 52
    • 79958737152 scopus 로고    scopus 로고
    • Immunology. No need to coax monocytes
    • Randolph G.J. Immunology. No need to coax monocytes. Science 2011, 332:1268-1269.
    • (2011) Science , vol.332 , pp. 1268-1269
    • Randolph, G.J.1
  • 53
    • 76249095169 scopus 로고    scopus 로고
    • Development of monocytes, macrophages, and dendritic cells
    • Geissmann F., et al. Development of monocytes, macrophages, and dendritic cells. Science 2010, 327:656-661.
    • (2010) Science , vol.327 , pp. 656-661
    • Geissmann, F.1
  • 54
    • 84856707159 scopus 로고    scopus 로고
    • NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis
    • Hanna R.N., et al. NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ. Res. 2012, 110:416-427.
    • (2012) Circ. Res. , vol.110 , pp. 416-427
    • Hanna, R.N.1
  • 55
    • 33846414364 scopus 로고    scopus 로고
    • Distinct differentiation potential of blood monocyte subsets in the lung
    • Landsman L., et al. Distinct differentiation potential of blood monocyte subsets in the lung. J. Immunol. 2007, 178:2000-2007.
    • (2007) J. Immunol. , vol.178 , pp. 2000-2007
    • Landsman, L.1
  • 56
    • 43249119617 scopus 로고    scopus 로고
    • - pulmonary dendritic cell populations
    • - pulmonary dendritic cell populations. J. Immunol. 2008, 180:3019-3027.
    • (2008) J. Immunol. , vol.180 , pp. 3019-3027
    • Jakubzick, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.